Hadi Bagheri, Shayesteh Bochani, Mohammad Seyedhamzeh, Zahra Shokri, Ali Kalantari-Hesari, Raymond J. Turner, Mahshid Kharaziha, Kimia Esmaeilzadeh, Mehdi Golami, Habib Zeighami, Aziz Maleki
{"title":"Copper-Cysteine Nanostructures for Synergetic Photothermal Therapy and Chemodynamic Therapy of Bacterial Skin Abscesses","authors":"Hadi Bagheri, Shayesteh Bochani, Mohammad Seyedhamzeh, Zahra Shokri, Ali Kalantari-Hesari, Raymond J. Turner, Mahshid Kharaziha, Kimia Esmaeilzadeh, Mehdi Golami, Habib Zeighami, Aziz Maleki","doi":"10.1002/adtp.202400099","DOIUrl":null,"url":null,"abstract":"<p>Skin lesions, including skin bacterial abscesses, have become one of the most important health challenges and usually need systemic high-dose antibiotics. Therefore, it is of particular importance to develop novel approaches for treating this ever-growing challenge to human health. To address this challenge, herein a copper nanostructure is developed giving combined photothermal and chemodynamic therapies for focal infection treatment. The Cu-based nanostructures with intrinsic catalytic properties are prepared by D-L or L cysteine (Cys) as ligand and copper ions. It is shown that the multifunctional copper-Cys (Cu-Cys) nanostructures can produce reactive oxygen species (ROS) and they exhibit near infrared (NIR)-enhanced catalytic activities to improve ROS production for highly efficient eradication of bacteria. Moreover, the results proved O<sub>2</sub> evolution property of the Cu-Cys nanoparticles (NPs). The nanostructures show shape-dependent antibacterial activity where DL-Cu-Cys NPs show higher bactericidal performance than L-Cu-Cys NPs. In vitro results demonstrate that 2.5 and 1.25 µg mL<sup>−1</sup> of DL-Cu-Cys NPs is enough to achieve rapid killing of <i>Escherichia coli</i> (<i>E. coli</i>) or <i>Staphylococcus aureus (S. aureus)</i> respectively under 808 nm light irradiation in 10 min. This work introduces a unique photoactive nanoagent to efficiently treat subcutaneous abscess by combining NIR light-triggered photothermal effect and catalytic generation of ROS without using any antibiotic.</p>","PeriodicalId":7284,"journal":{"name":"Advanced Therapeutics","volume":"7 8","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adtp.202400099","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Skin lesions, including skin bacterial abscesses, have become one of the most important health challenges and usually need systemic high-dose antibiotics. Therefore, it is of particular importance to develop novel approaches for treating this ever-growing challenge to human health. To address this challenge, herein a copper nanostructure is developed giving combined photothermal and chemodynamic therapies for focal infection treatment. The Cu-based nanostructures with intrinsic catalytic properties are prepared by D-L or L cysteine (Cys) as ligand and copper ions. It is shown that the multifunctional copper-Cys (Cu-Cys) nanostructures can produce reactive oxygen species (ROS) and they exhibit near infrared (NIR)-enhanced catalytic activities to improve ROS production for highly efficient eradication of bacteria. Moreover, the results proved O2 evolution property of the Cu-Cys nanoparticles (NPs). The nanostructures show shape-dependent antibacterial activity where DL-Cu-Cys NPs show higher bactericidal performance than L-Cu-Cys NPs. In vitro results demonstrate that 2.5 and 1.25 µg mL−1 of DL-Cu-Cys NPs is enough to achieve rapid killing of Escherichia coli (E. coli) or Staphylococcus aureus (S. aureus) respectively under 808 nm light irradiation in 10 min. This work introduces a unique photoactive nanoagent to efficiently treat subcutaneous abscess by combining NIR light-triggered photothermal effect and catalytic generation of ROS without using any antibiotic.