Effective Liquid Electrolytes for Enabling Room‐Temperature Sodium–Sulfur Batteries

IF 6.5 3区 材料科学 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Vittorio Marangon, Edoardo Barcaro, Francesco De Boni, Mirko Prato, Dominic Bresser, Jusef Hassoun
{"title":"Effective Liquid Electrolytes for Enabling Room‐Temperature Sodium–Sulfur Batteries","authors":"Vittorio Marangon, Edoardo Barcaro, Francesco De Boni, Mirko Prato, Dominic Bresser, Jusef Hassoun","doi":"10.1002/adsu.202400268","DOIUrl":null,"url":null,"abstract":"Glyme‐based electrolytes for sodium‐sulfur (Na–S) batteries are proposed for advanced cell configuration. Solutions of NaClO<jats:sub>4</jats:sub> or NaCF<jats:sub>3</jats:sub>SO<jats:sub>3</jats:sub> in tetraglyme are investigated in terms of thermal stability, ionic conductivity, Na<jats:sup>+</jats:sup>‐transference number, electrochemical stability, stripping‐deposition ability, and chemical stability in Na‐cells. Subsequently, versions of the electrolytes doped with fluoroethylene carbonate (FEC) are prepared using 0.5, 1, 2, or 3% additive weight concentrations, and evaluated by adopting the same approach used for the bare solutions. Scanning electron microscopy (SEM) provides morphological details of the passivation layer formed on the Na electrodes, while X‐ray photoelectron spectroscopy (XPS) sheds light on its composition. The most relevant achievement of the FEC‐added electrolyte is the suppression of the polysulfide shuttle in Na–S cells using a cathode with 70 wt.% of sulfur in the composite. This result appears even more notable considering the low amount of the additive requested for enabling the reversible cell operation. The solutions using 1% of FEC show the best compromise between cell performance and stability. Cyclic voltammetry (CV) displays the potential region related to the FEC electrochemical process responsible for Na–S cell operation. The understanding of the electrolyte features enables additional cycling tests using sulfur cathode with an optimized current collector, increased specific capacity, and coulombic efficiency.","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adsu.202400268","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Glyme‐based electrolytes for sodium‐sulfur (Na–S) batteries are proposed for advanced cell configuration. Solutions of NaClO4 or NaCF3SO3 in tetraglyme are investigated in terms of thermal stability, ionic conductivity, Na+‐transference number, electrochemical stability, stripping‐deposition ability, and chemical stability in Na‐cells. Subsequently, versions of the electrolytes doped with fluoroethylene carbonate (FEC) are prepared using 0.5, 1, 2, or 3% additive weight concentrations, and evaluated by adopting the same approach used for the bare solutions. Scanning electron microscopy (SEM) provides morphological details of the passivation layer formed on the Na electrodes, while X‐ray photoelectron spectroscopy (XPS) sheds light on its composition. The most relevant achievement of the FEC‐added electrolyte is the suppression of the polysulfide shuttle in Na–S cells using a cathode with 70 wt.% of sulfur in the composite. This result appears even more notable considering the low amount of the additive requested for enabling the reversible cell operation. The solutions using 1% of FEC show the best compromise between cell performance and stability. Cyclic voltammetry (CV) displays the potential region related to the FEC electrochemical process responsible for Na–S cell operation. The understanding of the electrolyte features enables additional cycling tests using sulfur cathode with an optimized current collector, increased specific capacity, and coulombic efficiency.

Abstract Image

实现室温钠硫电池的有效液态电解质
针对钠硫(Na-S)电池的先进电池配置,提出了基于甘油的电解质。研究了 NaClO4 或 NaCF3SO3 在四聚乙二醇中的溶液在钠电池中的热稳定性、离子电导率、Na+ 传递数、电化学稳定性、剥离沉积能力和化学稳定性。随后,使用 0.5、1、2 或 3% 的添加剂重量浓度制备了掺有氟碳酸乙烯酯 (FEC) 的电解质,并采用与裸溶液相同的方法进行了评估。扫描电子显微镜 (SEM) 提供了在 Na 电极上形成的钝化层的形态细节,而 X 射线光电子能谱 (XPS) 则揭示了其成分。添加了 FEC 的电解质最重要的成果是抑制了使用含硫量为 70 wt.% 的复合阴极的 Na-S 电池中的多硫穿梭现象。考虑到实现电池可逆运行所需的添加剂量较低,这一结果显得更为显著。使用 1% FEC 的溶液显示出电池性能和稳定性之间的最佳折衷。循环伏安法 (CV) 显示了与 Na-S 电池运行的 FEC 电化学过程有关的电位区域。了解了电解质的特性后,就可以使用硫阴极进行更多循环测试,从而优化集流器,提高比容量和库仑效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Sustainable Systems
Advanced Sustainable Systems Environmental Science-General Environmental Science
CiteScore
10.80
自引率
4.20%
发文量
186
期刊介绍: Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信