{"title":"New Insights into the Mechanism of the UV/Sulfite Process: Formation of SO2•– Radicals and Their Derivatives under Acidic Conditions","authors":"Linghao Kong, Zhe Jin, Feng Zhu, Mengchang He, Feng Qian and Xianjia Peng*, ","doi":"10.1021/acs.estlett.4c00251","DOIUrl":null,"url":null,"abstract":"<p >The UV/sulfite process shows great potential for reductively degrading or eliminating pollutants. While its mechanism in neutral and alkaline environments has been well-elucidated, the reaction pathway under acidic conditions remains unclear. Herein, we report the novel findings of the formation of reductive SO<sub>2</sub><sup>•–</sup> radicals and their derivatives in the UV/sulfite process at pH levels below 4. Mechanistic investigation revealed that H• radicals and SO<sub>3</sub><sup>•–</sup> radicals formed by the photolysis of sulfite under acidic conditions, with the H• radicals being scavenged by sulfite to produce SO<sub>2</sub><sup>•–</sup> radicals. Subsequently, these SO<sub>2</sub><sup>•–</sup> radicals are transformed into dithionite, thiosulfate, hydrogen sulfide, and elemental sulfur through a series of intricate reactions. This study is expected to expand the potential application of the UV/sulfite process under acid conditions.</p>","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":"11 7","pages":"752–758"},"PeriodicalIF":8.9000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science & Technology Letters Environ.","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.estlett.4c00251","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The UV/sulfite process shows great potential for reductively degrading or eliminating pollutants. While its mechanism in neutral and alkaline environments has been well-elucidated, the reaction pathway under acidic conditions remains unclear. Herein, we report the novel findings of the formation of reductive SO2•– radicals and their derivatives in the UV/sulfite process at pH levels below 4. Mechanistic investigation revealed that H• radicals and SO3•– radicals formed by the photolysis of sulfite under acidic conditions, with the H• radicals being scavenged by sulfite to produce SO2•– radicals. Subsequently, these SO2•– radicals are transformed into dithionite, thiosulfate, hydrogen sulfide, and elemental sulfur through a series of intricate reactions. This study is expected to expand the potential application of the UV/sulfite process under acid conditions.
期刊介绍:
Environmental Science & Technology Letters serves as an international forum for brief communications on experimental or theoretical results of exceptional timeliness in all aspects of environmental science, both pure and applied. Published as soon as accepted, these communications are summarized in monthly issues. Additionally, the journal features short reviews on emerging topics in environmental science and technology.