L. Müller-Lohse, S. Hartmann, A. Richter, C. Rembe
{"title":"Strain Determination Using a Global Interpolation Concept Based on Coherence Scanning Interferometry Measurements","authors":"L. Müller-Lohse, S. Hartmann, A. Richter, C. Rembe","doi":"10.1007/s11340-024-01084-8","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The experimental detection of small and large strains requires special approaches of full-field measurement techniques and their evaluation on 3D curved surfaces of components.</p><h3>Objectives</h3><p>Since classical digital image correlation methods have difficulties with the application of paints in some applications, one aim is to use a method in which the surface roughness is used to apply the strain calculation.</p><h3>Methods</h3><p>In this paper, 2D digital image correlation is applied to 2D intensity maps extracted from a coherence scanning interferometer together with height information. Height information are used to reconstruct the 3D motion of tracked material points. Surface interpolation and strain calculation are performed using globally formulated radial basis functions.</p><h3>Results</h3><p>The entire procedure leads to an appropriate technique for determining the in-plane strains in curved surfaces of parts, whereas the expected accuracy for various levels of the radial basis functions are discussed in detail.</p><h3>Conclusions</h3><p>Particularly, coherence scanning interferometry yields highly accurate height information. To smooth the surface motion, it turns out that in particular a regression analysis is required, where we apply radial basis functions with various approximation levels. This is an alternative procedure for surface strain determination.</p></div>","PeriodicalId":552,"journal":{"name":"Experimental Mechanics","volume":"64 8","pages":"1277 - 1294"},"PeriodicalIF":2.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11340-024-01084-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11340-024-01084-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Background
The experimental detection of small and large strains requires special approaches of full-field measurement techniques and their evaluation on 3D curved surfaces of components.
Objectives
Since classical digital image correlation methods have difficulties with the application of paints in some applications, one aim is to use a method in which the surface roughness is used to apply the strain calculation.
Methods
In this paper, 2D digital image correlation is applied to 2D intensity maps extracted from a coherence scanning interferometer together with height information. Height information are used to reconstruct the 3D motion of tracked material points. Surface interpolation and strain calculation are performed using globally formulated radial basis functions.
Results
The entire procedure leads to an appropriate technique for determining the in-plane strains in curved surfaces of parts, whereas the expected accuracy for various levels of the radial basis functions are discussed in detail.
Conclusions
Particularly, coherence scanning interferometry yields highly accurate height information. To smooth the surface motion, it turns out that in particular a regression analysis is required, where we apply radial basis functions with various approximation levels. This is an alternative procedure for surface strain determination.
期刊介绍:
Experimental Mechanics is the official journal of the Society for Experimental Mechanics that publishes papers in all areas of experimentation including its theoretical and computational analysis. The journal covers research in design and implementation of novel or improved experiments to characterize materials, structures and systems. Articles extending the frontiers of experimental mechanics at large and small scales are particularly welcome.
Coverage extends from research in solid and fluids mechanics to fields at the intersection of disciplines including physics, chemistry and biology. Development of new devices and technologies for metrology applications in a wide range of industrial sectors (e.g., manufacturing, high-performance materials, aerospace, information technology, medicine, energy and environmental technologies) is also covered.