An Integrated Hydrometallurgical Treatment and Combustion Process for Sustainable Production of Sm2O3 Nanoparticles from Waste SmCo Magnets

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Elif Emil-Kaya
{"title":"An Integrated Hydrometallurgical Treatment and Combustion Process for Sustainable Production of Sm2O3 Nanoparticles from Waste SmCo Magnets","authors":"Elif Emil-Kaya","doi":"10.1007/s42461-024-01032-z","DOIUrl":null,"url":null,"abstract":"<p>Samarium (Sm), as one of the rare earth elements (REEs), has gained significant attention in the production of SmCo magnets due to their high corrosion and oxidation resistance, as well as their high-temperature stability. SmCo magnets find applications in various industries, including but not limited to national defense, aerospace, military, and medical equipment. Sm and Co have been classified as a critical metal due to its economic importance and supply risk. Recovering Sm from SmCo magnets is an effective method to ensure a stable supply. The present study investigates an integrated hydrometallurgical treatment and combustion process for the preparation of rare earth oxide (Sm<sub>2</sub>O<sub>3</sub>) powders from SmCo. Initially, SmCo powders is exposed to nitric acid, and the resulting slurry is selectively oxidized at 250 °C to obtain Sm(NO<sub>3</sub>)<sub>3</sub>, Co<sub>2</sub>O<sub>3</sub>, and Fe<sub>2</sub>O<sub>3</sub>. Subsequently, the selectively oxidized powders are leached with water to extract Sm. Sm<sub>2</sub>O<sub>3</sub> powders are produced from the obtained leaching solution using an energy- and time-efficient solution combustion process. In this process, once the ignition point of the leaching solution-citric acid complex is reached, combustion occurs and concludes within a short time. The combusted powders are then calcined at different temperatures to produce crystalline Sm<sub>2</sub>O<sub>3</sub> powders. Finally, the optimal conditions for the production of Sm<sub>2</sub>O<sub>3</sub> are identified, and the produced powder is characterized through XRD and FESEM analysis.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42461-024-01032-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Samarium (Sm), as one of the rare earth elements (REEs), has gained significant attention in the production of SmCo magnets due to their high corrosion and oxidation resistance, as well as their high-temperature stability. SmCo magnets find applications in various industries, including but not limited to national defense, aerospace, military, and medical equipment. Sm and Co have been classified as a critical metal due to its economic importance and supply risk. Recovering Sm from SmCo magnets is an effective method to ensure a stable supply. The present study investigates an integrated hydrometallurgical treatment and combustion process for the preparation of rare earth oxide (Sm2O3) powders from SmCo. Initially, SmCo powders is exposed to nitric acid, and the resulting slurry is selectively oxidized at 250 °C to obtain Sm(NO3)3, Co2O3, and Fe2O3. Subsequently, the selectively oxidized powders are leached with water to extract Sm. Sm2O3 powders are produced from the obtained leaching solution using an energy- and time-efficient solution combustion process. In this process, once the ignition point of the leaching solution-citric acid complex is reached, combustion occurs and concludes within a short time. The combusted powders are then calcined at different temperatures to produce crystalline Sm2O3 powders. Finally, the optimal conditions for the production of Sm2O3 are identified, and the produced powder is characterized through XRD and FESEM analysis.

Abstract Image

从废旧钐钴磁铁中可持续生产 Sm2O3 纳米粒子的综合水冶处理和燃烧工艺
钐(Sm)作为稀土元素(REEs)之一,因其高抗腐蚀性、抗氧化性和高温稳定性,在钐钴磁体的生产中备受关注。钐钴磁铁在各行各业都有应用,包括但不限于国防、航空航天、军事和医疗设备。由于其经济重要性和供应风险,钐和钴已被列为关键金属。从钐钴磁体中回收钐是确保稳定供应的有效方法。本研究调查了从钐钴制备稀土氧化物(Sm2O3)粉末的综合湿法冶金处理和燃烧工艺。首先,将钐钴粉暴露于硝酸中,然后在 250 ℃ 下对得到的浆料进行选择性氧化,以获得 Sm(NO3)3、Co2O3 和 Fe2O3。随后,选择性氧化的粉末用水浸泡以提取 Sm。利用节能省时的溶液燃烧工艺,从获得的浸出液中生产出 Sm2O3 粉末。在这一过程中,一旦达到沥滤溶液-柠檬酸复合物的燃点,就会发生燃烧并在短时间内结束。燃烧后的粉末在不同温度下煅烧,生成结晶 Sm2O3 粉末。最后,确定了生产 Sm2O3 的最佳条件,并通过 XRD 和 FESEM 分析对生产的粉末进行了表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信