{"title":"An Integrated Hydrometallurgical Treatment and Combustion Process for Sustainable Production of Sm2O3 Nanoparticles from Waste SmCo Magnets","authors":"Elif Emil-Kaya","doi":"10.1007/s42461-024-01032-z","DOIUrl":null,"url":null,"abstract":"<p>Samarium (Sm), as one of the rare earth elements (REEs), has gained significant attention in the production of SmCo magnets due to their high corrosion and oxidation resistance, as well as their high-temperature stability. SmCo magnets find applications in various industries, including but not limited to national defense, aerospace, military, and medical equipment. Sm and Co have been classified as a critical metal due to its economic importance and supply risk. Recovering Sm from SmCo magnets is an effective method to ensure a stable supply. The present study investigates an integrated hydrometallurgical treatment and combustion process for the preparation of rare earth oxide (Sm<sub>2</sub>O<sub>3</sub>) powders from SmCo. Initially, SmCo powders is exposed to nitric acid, and the resulting slurry is selectively oxidized at 250 °C to obtain Sm(NO<sub>3</sub>)<sub>3</sub>, Co<sub>2</sub>O<sub>3</sub>, and Fe<sub>2</sub>O<sub>3</sub>. Subsequently, the selectively oxidized powders are leached with water to extract Sm. Sm<sub>2</sub>O<sub>3</sub> powders are produced from the obtained leaching solution using an energy- and time-efficient solution combustion process. In this process, once the ignition point of the leaching solution-citric acid complex is reached, combustion occurs and concludes within a short time. The combusted powders are then calcined at different temperatures to produce crystalline Sm<sub>2</sub>O<sub>3</sub> powders. Finally, the optimal conditions for the production of Sm<sub>2</sub>O<sub>3</sub> are identified, and the produced powder is characterized through XRD and FESEM analysis.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42461-024-01032-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Samarium (Sm), as one of the rare earth elements (REEs), has gained significant attention in the production of SmCo magnets due to their high corrosion and oxidation resistance, as well as their high-temperature stability. SmCo magnets find applications in various industries, including but not limited to national defense, aerospace, military, and medical equipment. Sm and Co have been classified as a critical metal due to its economic importance and supply risk. Recovering Sm from SmCo magnets is an effective method to ensure a stable supply. The present study investigates an integrated hydrometallurgical treatment and combustion process for the preparation of rare earth oxide (Sm2O3) powders from SmCo. Initially, SmCo powders is exposed to nitric acid, and the resulting slurry is selectively oxidized at 250 °C to obtain Sm(NO3)3, Co2O3, and Fe2O3. Subsequently, the selectively oxidized powders are leached with water to extract Sm. Sm2O3 powders are produced from the obtained leaching solution using an energy- and time-efficient solution combustion process. In this process, once the ignition point of the leaching solution-citric acid complex is reached, combustion occurs and concludes within a short time. The combusted powders are then calcined at different temperatures to produce crystalline Sm2O3 powders. Finally, the optimal conditions for the production of Sm2O3 are identified, and the produced powder is characterized through XRD and FESEM analysis.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.