Operation Parameters Optimization Method of Coal Flow Transportation Equipment Based on Convolutional Neural Network

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xueqi Yang, Xinqin Gao, Haiyang Zheng
{"title":"Operation Parameters Optimization Method of Coal Flow Transportation Equipment Based on Convolutional Neural Network","authors":"Xueqi Yang, Xinqin Gao, Haiyang Zheng","doi":"10.1007/s42461-024-01031-0","DOIUrl":null,"url":null,"abstract":"<p>Mine coal flow transportation has some typical features of long-distance and complex environments. The transportation equipment usually adopts the mode of constant speed, which makes a large amount of energy waste. To solve these problems, the characteristics of the coal flow transportation system are analyzed. Based on a principal component analysis-convolutional neural network (PCA-CNN), the operation parameters optimization method of coal flow transportation equipment is proposed. Taking the transport time, transport cost, and equipment utilization of belt conveyors and other equipment as the optimization objectives, the multi-objective functions are established, and the operation parameters such as transport speed, transport distance, and equipment start-up time are optimized. The PCA and the CNN are respectively used to determine the weight of each objective function and iteratively train the practical production data samples under multiple constraints. The fully connected layer of CNN is constructed by the Lagrange multiplier method. The optimal production mode and operation parameters of the coal flow transportation equipment are obtained, satisfying the multi-objective functions and constraints. Finally, the practical engineering case is simulated by Plant Simulation, and the operation parameters of the coal flow transportation equipment are compared before and after optimization. The research results show that the objective function of each experiment is optimized to some degree. Furthermore, comprising other common algorithms, the advantages and effectiveness of the based-CNN operation parameters optimization method are verified. These have an important guiding significance for energy-saving and efficient coal flow transportation equipment operation.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42461-024-01031-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Mine coal flow transportation has some typical features of long-distance and complex environments. The transportation equipment usually adopts the mode of constant speed, which makes a large amount of energy waste. To solve these problems, the characteristics of the coal flow transportation system are analyzed. Based on a principal component analysis-convolutional neural network (PCA-CNN), the operation parameters optimization method of coal flow transportation equipment is proposed. Taking the transport time, transport cost, and equipment utilization of belt conveyors and other equipment as the optimization objectives, the multi-objective functions are established, and the operation parameters such as transport speed, transport distance, and equipment start-up time are optimized. The PCA and the CNN are respectively used to determine the weight of each objective function and iteratively train the practical production data samples under multiple constraints. The fully connected layer of CNN is constructed by the Lagrange multiplier method. The optimal production mode and operation parameters of the coal flow transportation equipment are obtained, satisfying the multi-objective functions and constraints. Finally, the practical engineering case is simulated by Plant Simulation, and the operation parameters of the coal flow transportation equipment are compared before and after optimization. The research results show that the objective function of each experiment is optimized to some degree. Furthermore, comprising other common algorithms, the advantages and effectiveness of the based-CNN operation parameters optimization method are verified. These have an important guiding significance for energy-saving and efficient coal flow transportation equipment operation.

Abstract Image

基于卷积神经网络的煤流运输设备运行参数优化方法
矿井煤流运输具有长距离、环境复杂等典型特点。运输设备通常采用匀速方式,造成大量能源浪费。为了解决这些问题,本文分析了煤流运输系统的特点。基于主成分分析-卷积神经网络(PCA-CNN),提出了煤流运输设备运行参数优化方法。以带式输送机等设备的运输时间、运输成本、设备利用率为优化目标,建立多目标函数,对运输速度、运输距离、设备启动时间等运行参数进行优化。分别利用 PCA 和 CNN 确定各目标函数的权重,并对多约束条件下的实际生产数据样本进行迭代训练。CNN 的全连接层采用拉格朗日乘数法构建。在满足多目标函数和约束条件的前提下,得到煤流运输设备的最优生产模式和运行参数。最后,利用工厂仿真模拟实际工程案例,比较优化前后煤流运输设备的运行参数。研究结果表明,各实验的目标函数都得到了一定程度的优化。此外,与其他常用算法相比,基于 CNN 的运行参数优化方法的优势和有效性也得到了验证。这些对于煤流运输设备的节能高效运行具有重要的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信