Huimin Liu, Huixiong Huang, Haihao Yu, Shufeng Fan, Chunhua Liu
{"title":"Better growth and photosynthetic performance of Elodea nuttallii to short-term hydrogen sulfide than native Hydrilla verticillata","authors":"Huimin Liu, Huixiong Huang, Haihao Yu, Shufeng Fan, Chunhua Liu","doi":"10.1007/s10750-024-05592-5","DOIUrl":null,"url":null,"abstract":"<p>Sulfur deposition and eutrophication accelerated the production of hydrogen sulfide (H<sub>2</sub>S) in aquatic ecosystems. However, the understanding of how H<sub>2</sub>S affects the invasive potential of exotic aquatic plants is inadequate. Here, the exotic <i>Elodea nuttallii</i> (Planch.) H. St. John was exposed to five H<sub>2</sub>S concentrations (0–1.0 mM) and compared with the native <i>Hydrilla verticillata</i> (L. f.) Royle. Both plants grew well below 0.5 mM H<sub>2</sub>S, with <i>E. nuttallii</i> showing better performance. <i>E. nuttallii</i> and <i>H. verticillata</i> maintained their height growth rates by reducing the ramets number and the relative growth rate, respectively. This trade-off in morphological traits was for adequate light and oxygen. Furthermore, <i>E. nuttallii</i> exhibited higher chlorophyll and carotenoids content but lower chlorophyll a/b, indicating better utilization of low light in the water body. High concentrations of H<sub>2</sub>S induced oxidative stress in <i>E. nuttallii</i>, leading to higher superoxide dismutase (SOD), soluble sugars, and starch. The utilization strategies of C, N, P and S by <i>E. nuttallii</i> remained unchanged with varying H<sub>2</sub>S concentrations, demonstrating higher stoichiometric stability. In conclusion, <i>E. nuttallii</i> showed greater resistance to H<sub>2</sub>S compared to <i>H. verticillata</i>. The invasive potential of <i>E. nuttallii</i> in H<sub>2</sub>S-enriched aquatic environments was depending on the H<sub>2</sub>S concentration of native community.</p>","PeriodicalId":13147,"journal":{"name":"Hydrobiologia","volume":"355 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrobiologia","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10750-024-05592-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sulfur deposition and eutrophication accelerated the production of hydrogen sulfide (H2S) in aquatic ecosystems. However, the understanding of how H2S affects the invasive potential of exotic aquatic plants is inadequate. Here, the exotic Elodea nuttallii (Planch.) H. St. John was exposed to five H2S concentrations (0–1.0 mM) and compared with the native Hydrilla verticillata (L. f.) Royle. Both plants grew well below 0.5 mM H2S, with E. nuttallii showing better performance. E. nuttallii and H. verticillata maintained their height growth rates by reducing the ramets number and the relative growth rate, respectively. This trade-off in morphological traits was for adequate light and oxygen. Furthermore, E. nuttallii exhibited higher chlorophyll and carotenoids content but lower chlorophyll a/b, indicating better utilization of low light in the water body. High concentrations of H2S induced oxidative stress in E. nuttallii, leading to higher superoxide dismutase (SOD), soluble sugars, and starch. The utilization strategies of C, N, P and S by E. nuttallii remained unchanged with varying H2S concentrations, demonstrating higher stoichiometric stability. In conclusion, E. nuttallii showed greater resistance to H2S compared to H. verticillata. The invasive potential of E. nuttallii in H2S-enriched aquatic environments was depending on the H2S concentration of native community.
期刊介绍:
Hydrobiologia publishes original research, reviews and opinions regarding the biology of all aquatic environments, including the impact of human activities. We welcome molecular-, organism-, community- and ecosystem-level studies in contributions dealing with limnology and oceanography, including systematics and aquatic ecology. Hypothesis-driven experimental research is preferred, but also theoretical papers or articles with large descriptive content will be considered, provided they are made relevant to a broad hydrobiological audience. Applied aspects will be considered if firmly embedded in an ecological context.