V. I. Kolesnikov, O. V. Kudryakov, A. I. Voropaev, I. V. Kolesnikov, V. N. Varavka, M. S. Lifar, A. A. Guda, D. S. Manturov, E. S. Novikov
{"title":"Formation and Prediction of the Properties of Ion-Plasma Diamond-Like Coatings under Nitrogen Stabilization","authors":"V. I. Kolesnikov, O. V. Kudryakov, A. I. Voropaev, I. V. Kolesnikov, V. N. Varavka, M. S. Lifar, A. A. Guda, D. S. Manturov, E. S. Novikov","doi":"10.3103/S1068366624700028","DOIUrl":null,"url":null,"abstract":"<p>One of the options for solving the scientific and applied problem of the predicted formation of ion-plasma coating tribological characteristics is presented. The problem is solved by creating and analyzing a carbon coating database. The object of research in this work is ion-plasma diamond-like coatings (DLCs) deposited on a steel substrate. It is shown that the use of nitrogen instead of hydrogen to stabilize carbon coatings not only ensures stable thicknesses of DLCs at the level of 1.0–1.5 μm, but also serves as an important and convenient technological parameter for regulating the tribological coating characteristics during deposition. Based on the predicted and experimental values of friction coefficient μ and data on sample path length <i>L</i>, the intervals of optimal values of technological parameters %N and λ are determined. The studied ion-plasma DLCs, obtained according to the established optimal application modes, can be recommended for application under friction conditions equivalent to the tribological tests carried out at friction load <i>F</i> ≈ 10 N.</p>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":"45 1","pages":"9 - 17"},"PeriodicalIF":0.5000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Friction and Wear","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.3103/S1068366624700028","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
One of the options for solving the scientific and applied problem of the predicted formation of ion-plasma coating tribological characteristics is presented. The problem is solved by creating and analyzing a carbon coating database. The object of research in this work is ion-plasma diamond-like coatings (DLCs) deposited on a steel substrate. It is shown that the use of nitrogen instead of hydrogen to stabilize carbon coatings not only ensures stable thicknesses of DLCs at the level of 1.0–1.5 μm, but also serves as an important and convenient technological parameter for regulating the tribological coating characteristics during deposition. Based on the predicted and experimental values of friction coefficient μ and data on sample path length L, the intervals of optimal values of technological parameters %N and λ are determined. The studied ion-plasma DLCs, obtained according to the established optimal application modes, can be recommended for application under friction conditions equivalent to the tribological tests carried out at friction load F ≈ 10 N.
期刊介绍:
Journal of Friction and Wear is intended to bring together researchers and practitioners working in tribology. It provides novel information on science, practice, and technology of lubrication, wear prevention, and friction control. Papers cover tribological problems of physics, chemistry, materials science, and mechanical engineering, discussing issues from a fundamental or technological point of view.