Machine Learning Model Development to Predict Power Outage Duration (POD): A Case Study for Electric Utilities

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2024-07-02 DOI:10.3390/s24134313
Bita Ghasemkhani, Recep Alp Kut, Reyat Yilmaz, Derya Birant, Yiğit Ahmet Arıkök, Tugay Eren Güzelyol, Tuna Kut
{"title":"Machine Learning Model Development to Predict Power Outage Duration (POD): A Case Study for Electric Utilities","authors":"Bita Ghasemkhani, Recep Alp Kut, Reyat Yilmaz, Derya Birant, Yiğit Ahmet Arıkök, Tugay Eren Güzelyol, Tuna Kut","doi":"10.3390/s24134313","DOIUrl":null,"url":null,"abstract":"In the face of increasing climate variability and the complexities of modern power grids, managing power outages in electric utilities has emerged as a critical challenge. This paper introduces a novel predictive model employing machine learning algorithms, including decision tree (DT), random forest (RF), k-nearest neighbors (KNN), and extreme gradient boosting (XGBoost). Leveraging historical sensors-based and non-sensors-based outage data from a Turkish electric utility company, the model demonstrates adaptability to diverse grid structures, considers meteorological and non-meteorological outage causes, and provides real-time feedback to customers to effectively address the problem of power outage duration. Using the XGBoost algorithm with the minimum redundancy maximum relevance (MRMR) feature selection attained 98.433% accuracy in predicting outage durations, better than the state-of-the-art methods showing 85.511% accuracy on average over various datasets, a 12.922% improvement. This paper contributes a practical solution to enhance outage management and customer communication, showcasing the potential of machine learning to transform electric utility responses and improve grid resilience and reliability.","PeriodicalId":21698,"journal":{"name":"Sensors","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24134313","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the face of increasing climate variability and the complexities of modern power grids, managing power outages in electric utilities has emerged as a critical challenge. This paper introduces a novel predictive model employing machine learning algorithms, including decision tree (DT), random forest (RF), k-nearest neighbors (KNN), and extreme gradient boosting (XGBoost). Leveraging historical sensors-based and non-sensors-based outage data from a Turkish electric utility company, the model demonstrates adaptability to diverse grid structures, considers meteorological and non-meteorological outage causes, and provides real-time feedback to customers to effectively address the problem of power outage duration. Using the XGBoost algorithm with the minimum redundancy maximum relevance (MRMR) feature selection attained 98.433% accuracy in predicting outage durations, better than the state-of-the-art methods showing 85.511% accuracy on average over various datasets, a 12.922% improvement. This paper contributes a practical solution to enhance outage management and customer communication, showcasing the potential of machine learning to transform electric utility responses and improve grid resilience and reliability.
预测停电时间 (POD) 的机器学习模型开发:电力公司案例研究
面对日益严重的气候多变性和现代电网的复杂性,电力公司的停电管理已成为一项严峻的挑战。本文介绍了一种采用机器学习算法的新型预测模型,包括决策树(DT)、随机森林(RF)、k-近邻(KNN)和极梯度提升(XGBoost)。利用土耳其电力公司基于传感器和非传感器的历史停电数据,该模型展示了对不同电网结构的适应性,考虑了气象和非气象停电原因,并向客户提供实时反馈,以有效解决停电持续时间问题。使用 XGBoost 算法和最小冗余最大相关性(MRMR)特征选择,预测停电持续时间的准确率达到 98.433%,优于各种数据集上平均 85.511% 的最先进方法,提高了 12.922%。本文为加强停电管理和客户沟通提供了一个实用的解决方案,展示了机器学习在改变电力公用事业响应、提高电网恢复能力和可靠性方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信