{"title":"On Jacobians of geometrically reduced curves and their Néron models","authors":"Otto Overkamp","doi":"10.1090/tran/9150","DOIUrl":null,"url":null,"abstract":"<p>We study the structure of Jacobians of geometrically reduced curves over arbitrary (i.e., not necessarily perfect) fields. We show that, while such a group scheme cannot in general be decomposed into an affine and an Abelian part as over perfect fields, several important structural results for these group schemes nevertheless have close analoga over imperfect fields. We apply our results to prove two conjectures due to Bosch-Lütkebohmert-Raynaud about the existence of Néron models and Néron lft-models over excellent Dedekind schemes in the special case of Jacobians of geometrically reduced curves. Finally, we prove some existence results for semi-factorial models and related objects for general geometrically integral curves in the local case.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9150","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We study the structure of Jacobians of geometrically reduced curves over arbitrary (i.e., not necessarily perfect) fields. We show that, while such a group scheme cannot in general be decomposed into an affine and an Abelian part as over perfect fields, several important structural results for these group schemes nevertheless have close analoga over imperfect fields. We apply our results to prove two conjectures due to Bosch-Lütkebohmert-Raynaud about the existence of Néron models and Néron lft-models over excellent Dedekind schemes in the special case of Jacobians of geometrically reduced curves. Finally, we prove some existence results for semi-factorial models and related objects for general geometrically integral curves in the local case.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.