Nathan Brownlowe, Alcides Buss, Daniel Gonçalves, Jeremy Hume, Aidan Sims, Michael Whittaker
{"title":"𝐾𝐾-duality for self-similar groupoid actions on graphs","authors":"Nathan Brownlowe, Alcides Buss, Daniel Gonçalves, Jeremy Hume, Aidan Sims, Michael Whittaker","doi":"10.1090/tran/9183","DOIUrl":null,"url":null,"abstract":"<p>We extend Nekrashevych’s <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K upper K\"> <mml:semantics> <mml:mrow> <mml:mi>K</mml:mi> <mml:mi>K</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">KK</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-duality for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript asterisk\"> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mo>∗</mml:mo> </mml:msup> <mml:annotation encoding=\"application/x-tex\">C^*</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-algebras of regular, recurrent, contracting self-similar group actions to regular, contracting self-similar groupoid actions on a graph, removing the recurrence condition entirely and generalising from a finite alphabet to a finite graph.</p> <p>More precisely, given a regular and contracting self-similar groupoid <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper G comma upper E right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>,</mml:mo> <mml:mi>E</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(G,E)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> acting faithfully on a finite directed graph <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding=\"application/x-tex\">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we associate two <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript asterisk\"> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mo>∗</mml:mo> </mml:msup> <mml:annotation encoding=\"application/x-tex\">C^*</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-algebras, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper O left-parenthesis upper G comma upper E right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"script\">O</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>,</mml:mo> <mml:mi>E</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {O}(G,E)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove script upper O With caret left-parenthesis upper G comma upper E right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mover> <mml:mrow> <mml:mi mathvariant=\"script\">O</mml:mi> </mml:mrow> <mml:mo>^</mml:mo> </mml:mover> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>,</mml:mo> <mml:mi>E</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\widehat {\\mathcal {O}}(G,E)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, to it and prove that they are strongly Morita equivalent to the stable and unstable Ruelle C*-algebras of a Smale space arising from a Wieler solenoid of the self-similar limit space. That these algebras are Spanier-Whitehead dual in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K upper K\"> <mml:semantics> <mml:mrow> <mml:mi>K</mml:mi> <mml:mi>K</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">KK</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-theory follows from the general result for Ruelle algebras of irreducible Smale spaces proved by Kaminker, Putnam, and the last author.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9183","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We extend Nekrashevych’s KKKK-duality for C∗C^*-algebras of regular, recurrent, contracting self-similar group actions to regular, contracting self-similar groupoid actions on a graph, removing the recurrence condition entirely and generalising from a finite alphabet to a finite graph.
More precisely, given a regular and contracting self-similar groupoid (G,E)(G,E) acting faithfully on a finite directed graph EE, we associate two C∗C^*-algebras, O(G,E)\mathcal {O}(G,E) and O^(G,E)\widehat {\mathcal {O}}(G,E), to it and prove that they are strongly Morita equivalent to the stable and unstable Ruelle C*-algebras of a Smale space arising from a Wieler solenoid of the self-similar limit space. That these algebras are Spanier-Whitehead dual in KKKK-theory follows from the general result for Ruelle algebras of irreducible Smale spaces proved by Kaminker, Putnam, and the last author.
我们将内克拉舍维奇关于 C ∗ C^* -正则、递归、收缩自相似群作用的 K K KK -对偶性推广到图上的正则、收缩自相似群作用,完全去除递归条件,并从有限字母表推广到有限图。更确切地说,给定一个正则且收缩自相似的类群 ( G , E ) (G,E) 忠实地作用于有限有向图 E E,我们就会联想到两个 C ∗ C^* 算法,即 O ( G , E ) \mathcal {O}(G. E) 和 O ^ ( G , E ) \mathcal {O}(G. E) 、E) 和 O ^ ( G , E ) \widehat {mathcal {O}}(G,E) ,并证明它们强莫里塔等价于自相似极限空间的维勒孤岛所产生的斯马尔空间的稳定和不稳定的鲁埃尔 C* 算法。根据卡明克、普特南和最后一位作者证明的不可还原斯马尔空间的鲁埃尔代数的一般结果,这些代数在 K KK 理论中是斯潘尼-怀特海对偶的。
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.