𝐾𝐾-duality for self-similar groupoid actions on graphs

IF 1.2 2区 数学 Q1 MATHEMATICS
Nathan Brownlowe, Alcides Buss, Daniel Gonçalves, Jeremy Hume, Aidan Sims, Michael Whittaker
{"title":"𝐾𝐾-duality for self-similar groupoid actions on graphs","authors":"Nathan Brownlowe, Alcides Buss, Daniel Gonçalves, Jeremy Hume, Aidan Sims, Michael Whittaker","doi":"10.1090/tran/9183","DOIUrl":null,"url":null,"abstract":"<p>We extend Nekrashevych’s <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K upper K\"> <mml:semantics> <mml:mrow> <mml:mi>K</mml:mi> <mml:mi>K</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">KK</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-duality for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript asterisk\"> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mo>∗</mml:mo> </mml:msup> <mml:annotation encoding=\"application/x-tex\">C^*</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-algebras of regular, recurrent, contracting self-similar group actions to regular, contracting self-similar groupoid actions on a graph, removing the recurrence condition entirely and generalising from a finite alphabet to a finite graph.</p> <p>More precisely, given a regular and contracting self-similar groupoid <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper G comma upper E right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>,</mml:mo> <mml:mi>E</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(G,E)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> acting faithfully on a finite directed graph <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding=\"application/x-tex\">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we associate two <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript asterisk\"> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mo>∗</mml:mo> </mml:msup> <mml:annotation encoding=\"application/x-tex\">C^*</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-algebras, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper O left-parenthesis upper G comma upper E right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"script\">O</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>,</mml:mo> <mml:mi>E</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {O}(G,E)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove script upper O With caret left-parenthesis upper G comma upper E right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mover> <mml:mrow> <mml:mi mathvariant=\"script\">O</mml:mi> </mml:mrow> <mml:mo>^</mml:mo> </mml:mover> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>,</mml:mo> <mml:mi>E</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\widehat {\\mathcal {O}}(G,E)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, to it and prove that they are strongly Morita equivalent to the stable and unstable Ruelle C*-algebras of a Smale space arising from a Wieler solenoid of the self-similar limit space. That these algebras are Spanier-Whitehead dual in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K upper K\"> <mml:semantics> <mml:mrow> <mml:mi>K</mml:mi> <mml:mi>K</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">KK</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-theory follows from the general result for Ruelle algebras of irreducible Smale spaces proved by Kaminker, Putnam, and the last author.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9183","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We extend Nekrashevych’s K K KK -duality for C C^* -algebras of regular, recurrent, contracting self-similar group actions to regular, contracting self-similar groupoid actions on a graph, removing the recurrence condition entirely and generalising from a finite alphabet to a finite graph.

More precisely, given a regular and contracting self-similar groupoid ( G , E ) (G,E) acting faithfully on a finite directed graph E E , we associate two C C^* -algebras, O ( G , E ) \mathcal {O}(G,E) and O ^ ( G , E ) \widehat {\mathcal {O}}(G,E) , to it and prove that they are strongly Morita equivalent to the stable and unstable Ruelle C*-algebras of a Smale space arising from a Wieler solenoid of the self-similar limit space. That these algebras are Spanier-Whitehead dual in K K KK -theory follows from the general result for Ruelle algebras of irreducible Smale spaces proved by Kaminker, Putnam, and the last author.

图上自相似群元作用的 "徘徊 "对偶性
我们将内克拉舍维奇关于 C ∗ C^* -正则、递归、收缩自相似群作用的 K K KK -对偶性推广到图上的正则、收缩自相似群作用,完全去除递归条件,并从有限字母表推广到有限图。更确切地说,给定一个正则且收缩自相似的类群 ( G , E ) (G,E) 忠实地作用于有限有向图 E E,我们就会联想到两个 C ∗ C^* 算法,即 O ( G , E ) \mathcal {O}(G. E) 和 O ^ ( G , E ) \mathcal {O}(G. E) 、E) 和 O ^ ( G , E ) \widehat {mathcal {O}}(G,E) ,并证明它们强莫里塔等价于自相似极限空间的维勒孤岛所产生的斯马尔空间的稳定和不稳定的鲁埃尔 C* 算法。根据卡明克、普特南和最后一位作者证明的不可还原斯马尔空间的鲁埃尔代数的一般结果,这些代数在 K KK 理论中是斯潘尼-怀特海对偶的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
7.70%
发文量
171
审稿时长
3-6 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信