{"title":"Investigating the ability of PINNs to solve Burgers’ PDE near finite-time blowup","authors":"Dibyakanti Kumar, Anirbit Mukherjee","doi":"10.1088/2632-2153/ad51cd","DOIUrl":null,"url":null,"abstract":"Physics Informed Neural Networks (PINNs) have been achieving ever newer feats of solving complicated Partial Differential Equations (PDEs) numerically while offering an attractive trade-off between accuracy and speed of inference. A particularly challenging aspect of PDEs is that there exist simple PDEs which can evolve into singular solutions in finite time starting from smooth initial conditions. In recent times some striking experiments have suggested that PINNs might be good at even detecting such finite-time blow-ups. In this work, we embark on a program to investigate this stability of PINNs from a rigorous theoretical viewpoint. Firstly, we derive error bounds for PINNs for Burgers’ PDE, in arbitrary dimensions, under conditions that allow for a finite-time blow-up. Our bounds give a theoretical justification for the functional regularization terms that have been reported to be useful for training PINNs near finite-time blow-up. Then we demonstrate via experiments that our bounds are significantly correlated to the <inline-formula>\n<tex-math><?CDATA $\\ell_2$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>ℓ</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"mlstad51cdieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>-distance of the neurally found surrogate from the true blow-up solution, when computed on sequences of PDEs that are getting increasingly close to a blow-up.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad51cd","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Physics Informed Neural Networks (PINNs) have been achieving ever newer feats of solving complicated Partial Differential Equations (PDEs) numerically while offering an attractive trade-off between accuracy and speed of inference. A particularly challenging aspect of PDEs is that there exist simple PDEs which can evolve into singular solutions in finite time starting from smooth initial conditions. In recent times some striking experiments have suggested that PINNs might be good at even detecting such finite-time blow-ups. In this work, we embark on a program to investigate this stability of PINNs from a rigorous theoretical viewpoint. Firstly, we derive error bounds for PINNs for Burgers’ PDE, in arbitrary dimensions, under conditions that allow for a finite-time blow-up. Our bounds give a theoretical justification for the functional regularization terms that have been reported to be useful for training PINNs near finite-time blow-up. Then we demonstrate via experiments that our bounds are significantly correlated to the ℓ2-distance of the neurally found surrogate from the true blow-up solution, when computed on sequences of PDEs that are getting increasingly close to a blow-up.
期刊介绍:
Machine Learning Science and Technology is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories: advance the state of machine learning-driven applications in the sciences or make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.