Bo Wu, Hui Leng Choo, Wei Keat Ng, Ming Meng Pang, Li Wan Yoon, Wai Yin Wong
{"title":"Phosphoric Acid Electrolyte Uptake and Retention Analysis on UiO‐66‐NH2 Polybenzimidazole Nanocomposite Membranes","authors":"Bo Wu, Hui Leng Choo, Wei Keat Ng, Ming Meng Pang, Li Wan Yoon, Wai Yin Wong","doi":"10.1002/fuce.202400045","DOIUrl":null,"url":null,"abstract":"High‐temperature proton exchange membrane fuel cells (HT‐PEMFCs) have a major advantage over low‐temperature fuel cells due to their better tolerance to higher carbon monoxide content in the hydrogen feed, simpler fuel processing, and better heat management. However, a key challenge in the development of HT‐PEMFCs is the potential for acid leaching from phosphoric acid‐doped polybenzimidazole membranes, which can reduce overall fuel cell performance. This study investigates the effect of post‐synthetic modification of the UiO‐66‐NH<jats:sub>2</jats:sub> metal–organic framework (MOF) on the acid electrolyte uptake and retention of MOF/poly(4,4ʹ‐diphenylether‐5,5ʹ‐bibenzimidazole) (OPBI) nanocomposite membranes. Thermogravimetric analysis (TGA) was used to correlate the membrane properties with acid uptake. This work revealed that the presence of MOF with functional groups that can form hydrogen bonds with phosphoric acid molecules was able to alleviate the acid retention in the OPBI membrane with lower acid uptake. TGA demonstrated that the lower bound moisture content in the nanocomposite membranes was correlated to the lower acid uptake. In addition, the thermal stability of the nanocomposite membranes was found to improve.","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"8 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Cells","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/fuce.202400045","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
High‐temperature proton exchange membrane fuel cells (HT‐PEMFCs) have a major advantage over low‐temperature fuel cells due to their better tolerance to higher carbon monoxide content in the hydrogen feed, simpler fuel processing, and better heat management. However, a key challenge in the development of HT‐PEMFCs is the potential for acid leaching from phosphoric acid‐doped polybenzimidazole membranes, which can reduce overall fuel cell performance. This study investigates the effect of post‐synthetic modification of the UiO‐66‐NH2 metal–organic framework (MOF) on the acid electrolyte uptake and retention of MOF/poly(4,4ʹ‐diphenylether‐5,5ʹ‐bibenzimidazole) (OPBI) nanocomposite membranes. Thermogravimetric analysis (TGA) was used to correlate the membrane properties with acid uptake. This work revealed that the presence of MOF with functional groups that can form hydrogen bonds with phosphoric acid molecules was able to alleviate the acid retention in the OPBI membrane with lower acid uptake. TGA demonstrated that the lower bound moisture content in the nanocomposite membranes was correlated to the lower acid uptake. In addition, the thermal stability of the nanocomposite membranes was found to improve.
期刊介绍:
This journal is only available online from 2011 onwards.
Fuel Cells — From Fundamentals to Systems publishes on all aspects of fuel cells, ranging from their molecular basis to their applications in systems such as power plants, road vehicles and power sources in portables.
Fuel Cells is a platform for scientific exchange in a diverse interdisciplinary field. All related work in
-chemistry-
materials science-
physics-
chemical engineering-
electrical engineering-
mechanical engineering-
is included.
Fuel Cells—From Fundamentals to Systems has an International Editorial Board and Editorial Advisory Board, with each Editor being a renowned expert representing a key discipline in the field from either a distinguished academic institution or one of the globally leading companies.
Fuel Cells—From Fundamentals to Systems is designed to meet the needs of scientists and engineers who are actively working in the field. Until now, information on materials, stack technology and system approaches has been dispersed over a number of traditional scientific journals dedicated to classical disciplines such as electrochemistry, materials science or power technology.
Fuel Cells—From Fundamentals to Systems concentrates on the publication of peer-reviewed original research papers and reviews.