Zhongyu Gan, Tao Chen, Rufeng Zhang, Ruixuan Zhang
{"title":"Study on the Performance Degradation of Membrane Electrode Assembly in Proton Exchange Membrane Fuel Cell Caused by Freeze–Thaw Cycles","authors":"Zhongyu Gan, Tao Chen, Rufeng Zhang, Ruixuan Zhang","doi":"10.1002/fuce.202400059","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Durability of membrane electrode assembly (MEA) is a serious problem to be overcome in the commercial development of proton exchange membrane fuel cell (PEMFC). The change in volume due to water–ice conversion has an irreversible effect on the MEA, which affects the performance of PEMFC. For investigating the optimal initial water content of MEA that minimizes the impact on PEMFC performance after freeze–thaw (F/T) cycles, this study first measured the high-frequency resistance to determine the water content of MEA, and then subjected five MEAs with different water contents to 60 F/T cycles at −20°C to 30°C. The fuel cell output performance of five MEAs was found to be inconsistently degraded by polarization curve tests, with the cells of the two MEAs with the lowest and highest water contents exhibiting the worst output performance. Electrochemical impedance spectroscopy curves proved that the difference in resistance change after F/T cycles is one reason why the cell output performance is degraded differently. Finally, the degradation of cell performance was further explained by cyclic voltammetry. These results indicate that MEA has the best output performance for F/T cycles at an initial water content of 3.0.</p>\n </div>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Cells","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fuce.202400059","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Durability of membrane electrode assembly (MEA) is a serious problem to be overcome in the commercial development of proton exchange membrane fuel cell (PEMFC). The change in volume due to water–ice conversion has an irreversible effect on the MEA, which affects the performance of PEMFC. For investigating the optimal initial water content of MEA that minimizes the impact on PEMFC performance after freeze–thaw (F/T) cycles, this study first measured the high-frequency resistance to determine the water content of MEA, and then subjected five MEAs with different water contents to 60 F/T cycles at −20°C to 30°C. The fuel cell output performance of five MEAs was found to be inconsistently degraded by polarization curve tests, with the cells of the two MEAs with the lowest and highest water contents exhibiting the worst output performance. Electrochemical impedance spectroscopy curves proved that the difference in resistance change after F/T cycles is one reason why the cell output performance is degraded differently. Finally, the degradation of cell performance was further explained by cyclic voltammetry. These results indicate that MEA has the best output performance for F/T cycles at an initial water content of 3.0.
期刊介绍:
This journal is only available online from 2011 onwards.
Fuel Cells — From Fundamentals to Systems publishes on all aspects of fuel cells, ranging from their molecular basis to their applications in systems such as power plants, road vehicles and power sources in portables.
Fuel Cells is a platform for scientific exchange in a diverse interdisciplinary field. All related work in
-chemistry-
materials science-
physics-
chemical engineering-
electrical engineering-
mechanical engineering-
is included.
Fuel Cells—From Fundamentals to Systems has an International Editorial Board and Editorial Advisory Board, with each Editor being a renowned expert representing a key discipline in the field from either a distinguished academic institution or one of the globally leading companies.
Fuel Cells—From Fundamentals to Systems is designed to meet the needs of scientists and engineers who are actively working in the field. Until now, information on materials, stack technology and system approaches has been dispersed over a number of traditional scientific journals dedicated to classical disciplines such as electrochemistry, materials science or power technology.
Fuel Cells—From Fundamentals to Systems concentrates on the publication of peer-reviewed original research papers and reviews.