Argyrios V. Karatrantos, Lyazid Bouhala, Andreas Bick, Xenophon Krokidis, Martin Kröger
{"title":"Morphology, structure, and dynamics of ionic polydimethylsiloxane-silica nanocomposites","authors":"Argyrios V. Karatrantos, Lyazid Bouhala, Andreas Bick, Xenophon Krokidis, Martin Kröger","doi":"10.1557/s43579-024-00580-1","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In this paper, we investigate the morphology of ionic poly(dimethylsiloxane) silica nanocomposites of randomly grafted or chain-end-functionalized ionic PDMS melts using atomistic MD simulations. The localization of the charge alters the structure and dynamics of ionic PDMS chains near the nanosilica surface. The chain-end ionic PDMS obtains the largest dimensions, whereas the charge fraction of 10% of the random ionic copolymers leads to a contraction of PDMS chains. The charge fraction dramatically alters the dynamics of the ionic PDMS chains, although they reach the diffusive regime. An anisotropy of PDMS chain dynamics perpendicular and parallel to the nanosilica and an heterogeneity of PDMS dynamics from the nanosilica surface are observed for the longer randomly grafted and chain-end ionic PDMS chains. The longer randomly grafted ionic PDMS chains are strongly adsorbed in the vicinity of the nanosilica surface.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"17 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Communications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43579-024-00580-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we investigate the morphology of ionic poly(dimethylsiloxane) silica nanocomposites of randomly grafted or chain-end-functionalized ionic PDMS melts using atomistic MD simulations. The localization of the charge alters the structure and dynamics of ionic PDMS chains near the nanosilica surface. The chain-end ionic PDMS obtains the largest dimensions, whereas the charge fraction of 10% of the random ionic copolymers leads to a contraction of PDMS chains. The charge fraction dramatically alters the dynamics of the ionic PDMS chains, although they reach the diffusive regime. An anisotropy of PDMS chain dynamics perpendicular and parallel to the nanosilica and an heterogeneity of PDMS dynamics from the nanosilica surface are observed for the longer randomly grafted and chain-end ionic PDMS chains. The longer randomly grafted ionic PDMS chains are strongly adsorbed in the vicinity of the nanosilica surface.
期刊介绍:
MRS Communications is a full-color, high-impact journal focused on rapid publication of completed research with broad appeal to the materials community. MRS Communications offers a rapid but rigorous peer-review process and time to publication. Leveraging its access to the far-reaching technical expertise of MRS members and leading materials researchers from around the world, the journal boasts an experienced and highly respected board of principal editors and reviewers.