{"title":"Additive engineering in ether-based electrolyte for lithium metal battery","authors":"Jiayi Zhang, Laisuo Su","doi":"10.1557/s43579-024-00592-x","DOIUrl":null,"url":null,"abstract":"<p>Lithium metal batteries (LMBs) outperform lithium-ion batteries in the aspect of energy density as they use lithium metal as the anode that has extremely high energy density and low potential. However, the development of LMBs is hampered by uncontrollable Li plating morphology and inferior Coulombic efficiency (CE) during cycling. In the past decade, electrolyte development has been recognized as one of the most effective strategies to tackle these two challenges. Much progress has been made through designing advanced electrolytes, especially ether-based electrolytes, in developing LMBs. Herein, we focus on summarizing the use of additives in ether-based electrolytes to enable high-performance LMBs. The impact of additives in electrolytes on lithium metal anode (LMA) protection, cathode protection, extreme temperature operation, and fast charging for LMBs are systematically discussed. The review reveals the significance of additive engineering in developing advanced electrolytes for high-energy–density LMBs.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"133 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Communications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43579-024-00592-x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lithium metal batteries (LMBs) outperform lithium-ion batteries in the aspect of energy density as they use lithium metal as the anode that has extremely high energy density and low potential. However, the development of LMBs is hampered by uncontrollable Li plating morphology and inferior Coulombic efficiency (CE) during cycling. In the past decade, electrolyte development has been recognized as one of the most effective strategies to tackle these two challenges. Much progress has been made through designing advanced electrolytes, especially ether-based electrolytes, in developing LMBs. Herein, we focus on summarizing the use of additives in ether-based electrolytes to enable high-performance LMBs. The impact of additives in electrolytes on lithium metal anode (LMA) protection, cathode protection, extreme temperature operation, and fast charging for LMBs are systematically discussed. The review reveals the significance of additive engineering in developing advanced electrolytes for high-energy–density LMBs.
期刊介绍:
MRS Communications is a full-color, high-impact journal focused on rapid publication of completed research with broad appeal to the materials community. MRS Communications offers a rapid but rigorous peer-review process and time to publication. Leveraging its access to the far-reaching technical expertise of MRS members and leading materials researchers from around the world, the journal boasts an experienced and highly respected board of principal editors and reviewers.