Supramolecular hydrogels for sustained extracellular vesicle delivery

IF 1.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Neil Patel, Elijah Avery, Eun Ji Chung
{"title":"Supramolecular hydrogels for sustained extracellular vesicle delivery","authors":"Neil Patel, Elijah Avery, Eun Ji Chung","doi":"10.1557/s43579-024-00589-6","DOIUrl":null,"url":null,"abstract":"<p>Extracellular vesicles (EVs) have been explored as promising drug delivery platforms and cell-free therapies for a range of diseases. Despite their therapeutic potential, challenges persist in achieving sustained EV delivery. Here, we integrate EVs into a supramolecular and injectable hydrogel-based drug delivery system based on dodecyl- or octadecyl-modified hydroxypropyl methylcellulose (HPMC-C12 or -C18) that form non-covalent crosslinks with liposomes. Hydrogel mechanics and EV-release kinetics were tunable by varying liposome concentrations. Using mesenchymal stem cell-derived EVs (MSC-EVs), we confirm effective, hydrogel-mediated sustained EV delivery and uptake and a ~ 20% greater anti-inflammatory response in pathogenic vascular smooth muscle cells than bolus EV-only treatment.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"19 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Communications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43579-024-00589-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Extracellular vesicles (EVs) have been explored as promising drug delivery platforms and cell-free therapies for a range of diseases. Despite their therapeutic potential, challenges persist in achieving sustained EV delivery. Here, we integrate EVs into a supramolecular and injectable hydrogel-based drug delivery system based on dodecyl- or octadecyl-modified hydroxypropyl methylcellulose (HPMC-C12 or -C18) that form non-covalent crosslinks with liposomes. Hydrogel mechanics and EV-release kinetics were tunable by varying liposome concentrations. Using mesenchymal stem cell-derived EVs (MSC-EVs), we confirm effective, hydrogel-mediated sustained EV delivery and uptake and a ~ 20% greater anti-inflammatory response in pathogenic vascular smooth muscle cells than bolus EV-only treatment.

Graphical abstract

Abstract Image

用于细胞外囊泡持续输送的超分子水凝胶
细胞外囊泡(EVs)已被视为治疗一系列疾病的药物递送平台和无细胞疗法。尽管EVs具有治疗潜力,但要实现EVs的持续递送仍面临挑战。在这里,我们将 EVs 整合到一种基于十二烷基或十八烷基改性羟丙基甲基纤维素(HPMC-C12 或 -C18)的超分子可注射水凝胶给药系统中,这种水凝胶与脂质体形成非共价交联。通过改变脂质体的浓度,可以调整水凝胶的力学和EV释放动力学。利用间充质干细胞衍生的EVs(MSC-EVs),我们证实了水凝胶介导的有效、持续的EV递送和吸收,以及在致病性血管平滑肌细胞中产生的抗炎反应比单纯的栓剂EV处理高出约20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
MRS Communications
MRS Communications MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
2.60
自引率
10.50%
发文量
166
审稿时长
>12 weeks
期刊介绍: MRS Communications is a full-color, high-impact journal focused on rapid publication of completed research with broad appeal to the materials community. MRS Communications offers a rapid but rigorous peer-review process and time to publication. Leveraging its access to the far-reaching technical expertise of MRS members and leading materials researchers from around the world, the journal boasts an experienced and highly respected board of principal editors and reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信