{"title":"Transmission-scanning electron microscopy of interface fracture of ferrite deformation twins","authors":"Abdalrhaman Koko, T. James Marrow","doi":"10.1557/s43579-024-00595-8","DOIUrl":null,"url":null,"abstract":"<p>Deformation twins in the ferrite matrix of an age-hardened duplex stainless steel have been observed using on-axis transmission Kikuchi diffraction (TKD) in a scanning electron microscope. This provided details of the lattice misorientation and dislocation arrangement, including the dislocation-free zone at the twin tip. These observations provide evidence for the link between microcracking of the irregular twin/parent interface and relaxation of the residual strains that arise from twin growth, offering new insights into fracture mechanics in these materials.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"27 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Communications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43579-024-00595-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Deformation twins in the ferrite matrix of an age-hardened duplex stainless steel have been observed using on-axis transmission Kikuchi diffraction (TKD) in a scanning electron microscope. This provided details of the lattice misorientation and dislocation arrangement, including the dislocation-free zone at the twin tip. These observations provide evidence for the link between microcracking of the irregular twin/parent interface and relaxation of the residual strains that arise from twin growth, offering new insights into fracture mechanics in these materials.
期刊介绍:
MRS Communications is a full-color, high-impact journal focused on rapid publication of completed research with broad appeal to the materials community. MRS Communications offers a rapid but rigorous peer-review process and time to publication. Leveraging its access to the far-reaching technical expertise of MRS members and leading materials researchers from around the world, the journal boasts an experienced and highly respected board of principal editors and reviewers.