Nanostructured K‐Doped ZnO Thin Films: Synthesis and Investigations

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zohra Nazir Kayani, Ayesha Akram, Zainab Bashir, Salma Waseem, Saira Riaz, Shahzad Naseem
{"title":"Nanostructured K‐Doped ZnO Thin Films: Synthesis and Investigations","authors":"Zohra Nazir Kayani, Ayesha Akram, Zainab Bashir, Salma Waseem, Saira Riaz, Shahzad Naseem","doi":"10.1002/pssa.202300982","DOIUrl":null,"url":null,"abstract":"The present research describes the optical, structural, dielectric, photocatalytic, and antibacterial characteristics of potassium‐doped ZnO thin films synthesized via sol–gel dip coating technique with a K doping concentration of (1, 2, 3, 4, 5) wt%. Thin films are annealed at optimized temperatures. K‐doped ZnO has a hexagonal wurtzite phase having a preferential orientation along the (101) plane. The size of the crystallite decreases as the potassium doping percentage rises. Optical analysis reveals that the bandgap decreases when the quantity of K doping in ZnO increases. Dielectric constant experiments show that when the K doping % is raised, AC conductivity of thin films rises as well. Thin film resistivity and Hall coefficient decrease with increasing K concentration, but conductivity, mobility, and carrier concentration rise. Gram‐positive and gram‐negative bacteria are both responsive to K‐doped ZnO. With such antibacterial properties, K‐doped ZnO can be used in biomedicine and to protect the environment. The methylene blue dye is effectively degraded by the photocatalyst K‐doped ZnO, making it useful for removing pollution from wastewater.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi A-applications and Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/pssa.202300982","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The present research describes the optical, structural, dielectric, photocatalytic, and antibacterial characteristics of potassium‐doped ZnO thin films synthesized via sol–gel dip coating technique with a K doping concentration of (1, 2, 3, 4, 5) wt%. Thin films are annealed at optimized temperatures. K‐doped ZnO has a hexagonal wurtzite phase having a preferential orientation along the (101) plane. The size of the crystallite decreases as the potassium doping percentage rises. Optical analysis reveals that the bandgap decreases when the quantity of K doping in ZnO increases. Dielectric constant experiments show that when the K doping % is raised, AC conductivity of thin films rises as well. Thin film resistivity and Hall coefficient decrease with increasing K concentration, but conductivity, mobility, and carrier concentration rise. Gram‐positive and gram‐negative bacteria are both responsive to K‐doped ZnO. With such antibacterial properties, K‐doped ZnO can be used in biomedicine and to protect the environment. The methylene blue dye is effectively degraded by the photocatalyst K‐doped ZnO, making it useful for removing pollution from wastewater.
纳米结构掺K氧化锌薄膜:合成与研究
本研究介绍了通过溶胶-凝胶浸涂技术合成的钾掺杂氧化锌薄膜的光学、结构、介电、光催化和抗菌特性,钾掺杂浓度为 (1, 2, 3, 4, 5) wt%。薄膜在最佳温度下退火。掺杂了 K 的氧化锌具有六方菱面体相,并沿 (101) 平面优先取向。随着钾掺杂百分比的增加,晶粒尺寸也随之减小。光学分析表明,当氧化锌中的钾掺杂量增加时,带隙会减小。介电常数实验表明,当钾掺杂百分比增加时,薄膜的交流电导率也会增加。薄膜电阻率和霍尔系数随 K 浓度的增加而降低,但电导率、迁移率和载流子浓度却上升了。革兰氏阳性和革兰氏阴性细菌对掺杂 K 的氧化锌都有反应。掺 K 氧化锌具有这种抗菌特性,可用于生物医学和环境保护。光催化剂 K 掺杂氧化锌能有效降解亚甲基蓝染料,因此可用于去除废水中的污染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
5.00%
发文量
393
审稿时长
2 months
期刊介绍: The physica status solidi (pss) journal group is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Among the largest and most established international publications, the pss journals publish reviews, letters and original articles, as regular content as well as in special issues and topical sections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信