Shayan Angizi, Sayed Ali Ahmad Alem, Mahdi Torabian, Maryam Khalaj, Dmitri Golberg, Amir Pakdel
{"title":"Boron Nitride-Integrated Lithium Batteries: Exploring Innovations in Longevity and Performance","authors":"Shayan Angizi, Sayed Ali Ahmad Alem, Mahdi Torabian, Maryam Khalaj, Dmitri Golberg, Amir Pakdel","doi":"10.1002/eem2.12777","DOIUrl":null,"url":null,"abstract":"<p>The current global warming, coupled with the growing demand for energy in our daily lives, necessitates the development of more efficient and reliable energy storage devices. Lithium batteries (LBs) are at the forefront of emerging power sources addressing these challenges. Recent studies have shown that integrating hexagonal boron nitride (h-BN) nanomaterials into LBs enhances the safety, longevity, and electrochemical performance of all LB components, including electrodes, electrolytes, and separators, thereby suggesting their potential value in advancing eco-friendly energy solutions. This review provides an overview of the most recent applications of h-BN nanomaterials in LBs. It begins with an informative introduction to h-BN nanomaterials and their relevant properties in the context of LB applications. Subsequently, it addresses the challenges posed by h-BN and discusses existing strategies to overcome these limitations, offering valuable insights into the potential of BN nanomaterials. The review then proceeds to outline the functions of h-BN in LB components, emphasizing the molecular-level mechanisms responsible for performance improvements. Finally, the review concludes by presenting the current challenges and prospects of integrating h-BN nanomaterials into battery research.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 6","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12777","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12777","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The current global warming, coupled with the growing demand for energy in our daily lives, necessitates the development of more efficient and reliable energy storage devices. Lithium batteries (LBs) are at the forefront of emerging power sources addressing these challenges. Recent studies have shown that integrating hexagonal boron nitride (h-BN) nanomaterials into LBs enhances the safety, longevity, and electrochemical performance of all LB components, including electrodes, electrolytes, and separators, thereby suggesting their potential value in advancing eco-friendly energy solutions. This review provides an overview of the most recent applications of h-BN nanomaterials in LBs. It begins with an informative introduction to h-BN nanomaterials and their relevant properties in the context of LB applications. Subsequently, it addresses the challenges posed by h-BN and discusses existing strategies to overcome these limitations, offering valuable insights into the potential of BN nanomaterials. The review then proceeds to outline the functions of h-BN in LB components, emphasizing the molecular-level mechanisms responsible for performance improvements. Finally, the review concludes by presenting the current challenges and prospects of integrating h-BN nanomaterials into battery research.
期刊介绍:
Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.