{"title":"Fine grained dual level attention mechanisms with spacial context information fusion for object detection","authors":"Haigang Deng, Chuanxu Wang, Chengwei Li, Zhang Hao","doi":"10.1007/s10044-024-01290-z","DOIUrl":null,"url":null,"abstract":"<p>For channel and spatial feature map C×W×H in object detection task, its information fusion usually relies on attention mechanism, that is, all C channels and the entire space W×H are all compressed respectively via average/max pooling, and then their attention weight masks are obtained based on correlation calculation. This coarse-grained global operation ignores the differences among multiple channels and diverse spatial regions, resulting in inaccurate attention weights. In addition, how to mine the contextual information in the space W×H is also a challenge for object recognition and localization. To this end, we propose a Fine-Grained Dual Level Attention Mechanism joint Spacial Context Information Fusion module for object detection (FGDLAM&SCIF). It is a cascaded structure, firstly, we subdivide the feature space W×H into <i>n</i> (optimized as <i>n</i> = 4 in experiments) subspaces and construct a global adaptive pooling and one-dimensional convolution algorithm to effectively extract the feature channel weights on each subspace respectively. Secondly, the C feature channels are divided into <i>n</i> (<i>n</i> = 4) sub-channels, and then a multi-scale module is constructed in the feature space W×H to mine context information. Finally, row and column coding is used to fuse them orthogonally to obtain enhanced features. This module is embeddable, which can be transplanted into any object detection network, such as YOLOv4/v5, PPYOLOE, YOLOX and MobileNet, ResNet as well. Experiments are conducted on the MS COCO 2017 and Pascal VOC 2007 datasets to verify its effectiveness and good portability.</p>","PeriodicalId":54639,"journal":{"name":"Pattern Analysis and Applications","volume":"108 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Analysis and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10044-024-01290-z","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
For channel and spatial feature map C×W×H in object detection task, its information fusion usually relies on attention mechanism, that is, all C channels and the entire space W×H are all compressed respectively via average/max pooling, and then their attention weight masks are obtained based on correlation calculation. This coarse-grained global operation ignores the differences among multiple channels and diverse spatial regions, resulting in inaccurate attention weights. In addition, how to mine the contextual information in the space W×H is also a challenge for object recognition and localization. To this end, we propose a Fine-Grained Dual Level Attention Mechanism joint Spacial Context Information Fusion module for object detection (FGDLAM&SCIF). It is a cascaded structure, firstly, we subdivide the feature space W×H into n (optimized as n = 4 in experiments) subspaces and construct a global adaptive pooling and one-dimensional convolution algorithm to effectively extract the feature channel weights on each subspace respectively. Secondly, the C feature channels are divided into n (n = 4) sub-channels, and then a multi-scale module is constructed in the feature space W×H to mine context information. Finally, row and column coding is used to fuse them orthogonally to obtain enhanced features. This module is embeddable, which can be transplanted into any object detection network, such as YOLOv4/v5, PPYOLOE, YOLOX and MobileNet, ResNet as well. Experiments are conducted on the MS COCO 2017 and Pascal VOC 2007 datasets to verify its effectiveness and good portability.
期刊介绍:
The journal publishes high quality articles in areas of fundamental research in intelligent pattern analysis and applications in computer science and engineering. It aims to provide a forum for original research which describes novel pattern analysis techniques and industrial applications of the current technology. In addition, the journal will also publish articles on pattern analysis applications in medical imaging. The journal solicits articles that detail new technology and methods for pattern recognition and analysis in applied domains including, but not limited to, computer vision and image processing, speech analysis, robotics, multimedia, document analysis, character recognition, knowledge engineering for pattern recognition, fractal analysis, and intelligent control. The journal publishes articles on the use of advanced pattern recognition and analysis methods including statistical techniques, neural networks, genetic algorithms, fuzzy pattern recognition, machine learning, and hardware implementations which are either relevant to the development of pattern analysis as a research area or detail novel pattern analysis applications. Papers proposing new classifier systems or their development, pattern analysis systems for real-time applications, fuzzy and temporal pattern recognition and uncertainty management in applied pattern recognition are particularly solicited.