Substitution of Ni with Cu and Its Impact on the Corrosion Resistance of Ni-Advanced Weathering Steels in the Simulated Tropical Marine Atmosphere

IF 3.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Bo Zhang, Wei Liu, Jiaqi Xie, Yipu Sun, Longjun Chen, Hai Li, Fulong Wang, Bowen Hou
{"title":"Substitution of Ni with Cu and Its Impact on the Corrosion Resistance of Ni-Advanced Weathering Steels in the Simulated Tropical Marine Atmosphere","authors":"Bo Zhang,&nbsp;Wei Liu,&nbsp;Jiaqi Xie,&nbsp;Yipu Sun,&nbsp;Longjun Chen,&nbsp;Hai Li,&nbsp;Fulong Wang,&nbsp;Bowen Hou","doi":"10.1007/s12540-024-01703-y","DOIUrl":null,"url":null,"abstract":"<div><p>The effect of substituting equal concentrations of Ni with 0.7 wt% and 1 wt% Cu on the corrosion behavior of Ni-advanced weathering steels (WS) in the simulated tropical marine atmosphere was studied. The results reveal that the effect of substituting Ni with Cu on enhancing the corrosion resistance of Ni-advanced WS is positively correlated with the substitution of Cu, as the concentration of Cu substitution affects the synergistic effect of Cu/Ni in Ni-advanced WS. With the substitution content of 0.7 wt% Cu, the synergy effect of Cu/Ni on enhancing the densification and protection of the rust layer is weakened which promotes the charge transfer process and accelerates the corrosion process of Ni-advanced WS. As the content of Cu substituting Ni increases up to 1 wt%, the synergy effect of Cu/Ni is stronger than that of Ni at the same content. Consequently, modifies the Ni-depleted region in the rust layer, the α-FeOOH content in the rust layer is increased, makes the rust layer dense, and intensifies the charge transfer resistance at the substrate-rust interface, thereby improving the corrosion resistance of the Ni-advanced WS.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"30 11","pages":"3030 - 3044"},"PeriodicalIF":3.3000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals and Materials International","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12540-024-01703-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The effect of substituting equal concentrations of Ni with 0.7 wt% and 1 wt% Cu on the corrosion behavior of Ni-advanced weathering steels (WS) in the simulated tropical marine atmosphere was studied. The results reveal that the effect of substituting Ni with Cu on enhancing the corrosion resistance of Ni-advanced WS is positively correlated with the substitution of Cu, as the concentration of Cu substitution affects the synergistic effect of Cu/Ni in Ni-advanced WS. With the substitution content of 0.7 wt% Cu, the synergy effect of Cu/Ni on enhancing the densification and protection of the rust layer is weakened which promotes the charge transfer process and accelerates the corrosion process of Ni-advanced WS. As the content of Cu substituting Ni increases up to 1 wt%, the synergy effect of Cu/Ni is stronger than that of Ni at the same content. Consequently, modifies the Ni-depleted region in the rust layer, the α-FeOOH content in the rust layer is increased, makes the rust layer dense, and intensifies the charge transfer resistance at the substrate-rust interface, thereby improving the corrosion resistance of the Ni-advanced WS.

Graphical Abstract

Abstract Image

Abstract Image

用铜替代镍及其对模拟热带海洋大气中镍高级耐候钢耐腐蚀性的影响
研究了用 0.7 wt% 和 1 wt% 的铜替代等浓度的镍对镍高级耐候钢(WS)在模拟热带海洋大气中的腐蚀行为的影响。结果表明,由于铜的替代浓度会影响镍高级耐候钢中铜/镍的协同效应,因此用铜替代镍对提高镍高级耐候钢耐腐蚀性的效果与铜的替代量呈正相关。当 Cu 的替代含量为 0.7 wt% 时,Cu/Ni 在增强锈层致密化和保护方面的协同效应减弱,从而促进了电荷转移过程,加速了镍高级 WS 的腐蚀过程。当铜替代镍的含量增加到 1 wt% 时,铜/镍的协同效应比相同含量下镍的协同效应更强。因此,改变了锈层中的贫镍区域,增加了锈层中α-FeOOH的含量,使锈层致密,并增强了基体-锈界面的电荷转移阻力,从而提高了镍强化 WS 的耐腐蚀性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Metals and Materials International
Metals and Materials International 工程技术-材料科学:综合
CiteScore
7.10
自引率
8.60%
发文量
197
审稿时长
3.7 months
期刊介绍: Metals and Materials International publishes original papers and occasional critical reviews on all aspects of research and technology in materials engineering: physical metallurgy, materials science, and processing of metals and other materials. Emphasis is placed on those aspects of the science of materials that are concerned with the relationships among the processing, structure and properties (mechanical, chemical, electrical, electrochemical, magnetic and optical) of materials. Aspects of processing include the melting, casting, and fabrication with the thermodynamics, kinetics and modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信