{"title":"Some 𝑞-identities derived by the ordinary derivative operator","authors":"Jin Wang, Ruiqi Ruan","doi":"10.1090/proc/16817","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate applications of the ordinary derivative operator, instead of the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\"application/x-tex\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-derivative operator, to the theory of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\"application/x-tex\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-series. As main results, many new summation and transformation formulas are established which are closely related to some well-known formulas such as the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\"application/x-tex\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-binomial theorem, Ramanujan’s <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"Subscript 1 Baseline psi 1\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow> </mml:mrow> <mml:mn>1</mml:mn> </mml:msub> <mml:msub> <mml:mi>ψ</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">{}_1\\psi _1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> formula, the quintuple product identity, Gasper’s <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q\"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding=\"application/x-tex\">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Clausen product formula, and Rogers’ <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"Subscript 6 Baseline phi 5\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow> </mml:mrow> <mml:mn>6</mml:mn> </mml:msub> <mml:msub> <mml:mi>ϕ</mml:mi> <mml:mn>5</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">{}_6\\phi _5</mml:annotation> </mml:semantics> </mml:math> </inline-formula> formula, etc. Among these results is a finite form of the Rogers-Ramanujan identity and a short way to Eisenstein’s theorem on Lambert series.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"56 73 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16817","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we investigate applications of the ordinary derivative operator, instead of the qq-derivative operator, to the theory of qq-series. As main results, many new summation and transformation formulas are established which are closely related to some well-known formulas such as the qq-binomial theorem, Ramanujan’s 1ψ1{}_1\psi _1 formula, the quintuple product identity, Gasper’s qq-Clausen product formula, and Rogers’ 6ϕ5{}_6\phi _5 formula, etc. Among these results is a finite form of the Rogers-Ramanujan identity and a short way to Eisenstein’s theorem on Lambert series.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.