Normalized solutions for a fractional Schrödinger–Poisson system with critical growth

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Xiaoming He, Yuxi Meng, Marco Squassina
{"title":"Normalized solutions for a fractional Schrödinger–Poisson system with critical growth","authors":"Xiaoming He, Yuxi Meng, Marco Squassina","doi":"10.1007/s00526-024-02749-x","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the fractional critical Schrödinger–Poisson system </p><span>$$\\begin{aligned}{\\left\\{ \\begin{array}{ll} (-\\Delta )^su +\\lambda \\phi u= \\alpha u+\\mu |u|^{q-2}u+|u|^{2^*_s-2}u,&amp;{}~~ \\hbox {in}~{\\mathbb {R}}^3,\\\\ (-\\Delta )^t\\phi =u^2,&amp;{}~~ \\hbox {in}~{\\mathbb {R}}^3,\\end{array}\\right. } \\end{aligned}$$</span><p>having prescribed mass </p><span>$$\\begin{aligned} \\int _{{\\mathbb {R}}^3} |u|^2dx=a^2,\\end{aligned}$$</span><p>where <span>\\( s, t \\in (0, 1)\\)</span> satisfy <span>\\(2\\,s+2t&gt; 3, q\\in (2,2^*_s), a&gt;0\\)</span> and <span>\\(\\lambda ,\\mu &gt;0\\)</span> parameters and <span>\\(\\alpha \\in {\\mathbb {R}}\\)</span> is an undetermined parameter. For this problem, under the <span>\\(L^2\\)</span>-subcritical perturbation <span>\\(\\mu |u|^{q-2}u, q\\in (2,2+\\frac{4\\,s}{3})\\)</span>, we derive the existence of multiple normalized solutions by means of the truncation technique, concentration-compactness principle and the genus theory. In the <span>\\(L^2\\)</span>-supercritical perturbation <span>\\(\\mu |u|^{q-2}u,q\\in (2+\\frac{4\\,s}{3}, 2^*_s)\\)</span>, we prove two different results of normalized solutions when parameters <span>\\(\\lambda ,\\mu \\)</span> satisfy different assumptions, by applying the constrained variational methods and the mountain pass theorem. Our results extend and improve some previous ones of Zhang et al. (Adv Nonlinear Stud 16:15–30, 2016); and of Teng (J Differ Equ 261:3061–3106, 2016), since we are concerned with normalized solutions.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02749-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the fractional critical Schrödinger–Poisson system

$$\begin{aligned}{\left\{ \begin{array}{ll} (-\Delta )^su +\lambda \phi u= \alpha u+\mu |u|^{q-2}u+|u|^{2^*_s-2}u,&{}~~ \hbox {in}~{\mathbb {R}}^3,\\ (-\Delta )^t\phi =u^2,&{}~~ \hbox {in}~{\mathbb {R}}^3,\end{array}\right. } \end{aligned}$$

having prescribed mass

$$\begin{aligned} \int _{{\mathbb {R}}^3} |u|^2dx=a^2,\end{aligned}$$

where \( s, t \in (0, 1)\) satisfy \(2\,s+2t> 3, q\in (2,2^*_s), a>0\) and \(\lambda ,\mu >0\) parameters and \(\alpha \in {\mathbb {R}}\) is an undetermined parameter. For this problem, under the \(L^2\)-subcritical perturbation \(\mu |u|^{q-2}u, q\in (2,2+\frac{4\,s}{3})\), we derive the existence of multiple normalized solutions by means of the truncation technique, concentration-compactness principle and the genus theory. In the \(L^2\)-supercritical perturbation \(\mu |u|^{q-2}u,q\in (2+\frac{4\,s}{3}, 2^*_s)\), we prove two different results of normalized solutions when parameters \(\lambda ,\mu \) satisfy different assumptions, by applying the constrained variational methods and the mountain pass theorem. Our results extend and improve some previous ones of Zhang et al. (Adv Nonlinear Stud 16:15–30, 2016); and of Teng (J Differ Equ 261:3061–3106, 2016), since we are concerned with normalized solutions.

具有临界增长的分数薛定谔-泊松系统的归一化解法
本文研究了分数临界薛定谔-泊松系统 $$\begin{aligned}{left\{ \begin{array}{ll} (-\Delta )^su +\lambda \phi u= \alpha u+\mu |u|^{q-2}u+|u|^{2^*_s-2}u,&;{}~~ \hbox {in}~{\mathbb {R}}^3,\ (-\Delta )^t\phi =u^2,&{}~~ \hbox {in}~{\mathbb {R}}^3,\end{array}\right.}\有规定质量的 $$\begin{aligned}\int _{{{mathbb {R}}^3}|u|^2dx=a^2,(end{aligned}$$其中(s, t (0, 1))满足(2\,s+2t> 3, q\in (2,2^*_s), a>0)和(lambda ,\mu >0)参数,并且(\alpha \in {{mathbb {R}})是一个未确定的参数。对于这个问题,在\(L^2\)-次临界扰动\(\mu |u|^{q-2}u, q\in (2,2+\frac{4,s}{3})\)下,我们通过截断技术、集中-紧密性原理和属理论推导出了多个归一化解的存在性。在 \(L^2\)-supercritical perturbation \(\mu |u|^{q-2}u,q\in (2+frac{4\,s}{3}, 2^*_s)\) 中,当参数 \(\lambda ,\mu \) 满足不同假设时,我们通过应用约束变分法和山口定理证明了归一化解的两种不同结果。由于我们关注的是归一化解,因此我们的结果扩展并改进了Zhang等(Adv Nonlinear Stud 16:15-30, 2016)和Teng(J Differ Equ 261:3061-3106, 2016)之前的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信