Uniqueness when the $$L_p$$ curvature is close to be a constant for $$p\in [0,1)$$

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Károly J. Böröczky, Christos Saroglou
{"title":"Uniqueness when the $$L_p$$ curvature is close to be a constant for $$p\\in [0,1)$$","authors":"Károly J. Böröczky, Christos Saroglou","doi":"10.1007/s00526-024-02763-z","DOIUrl":null,"url":null,"abstract":"<p>For fixed positive integer <i>n</i>, <span>\\(p\\in [0,1)\\)</span>, <span>\\(a\\in (0,1)\\)</span>, we prove that if a function <span>\\(g:{\\mathbb {S}}^{n-1}\\rightarrow {\\mathbb {R}}\\)</span> is sufficiently close to 1, in the <span>\\(C^a\\)</span> sense, then there exists a unique convex body <i>K</i> whose <span>\\(L_p\\)</span> curvature function equals <i>g</i>. This was previously established for <span>\\(n=3\\)</span>, <span>\\(p=0\\)</span> by Chen et al. (Adv Math 411(A):108782, 2022) and in the symmetric case by Chen et al. (Adv Math 368:107166, 2020). Related, we show that if <span>\\(p=0\\)</span> and <span>\\(n=4\\)</span> or <span>\\(n\\le 3\\)</span> and <span>\\(p\\in [0,1)\\)</span>, and the <span>\\(L_p\\)</span> curvature function <i>g</i> of a (sufficiently regular, containing the origin) convex body <i>K</i> satisfies <span>\\(\\lambda ^{-1}\\le g\\le \\lambda \\)</span>, for some <span>\\(\\lambda &gt;1\\)</span>, then <span>\\(\\max _{x\\in {\\mathbb {S}}^{n-1}}h_K(x)\\le C(p,\\lambda )\\)</span>, for some constant <span>\\(C(p,\\lambda )&gt;0\\)</span> that depends only on <i>p</i> and <span>\\(\\lambda \\)</span>. This also extends a result from Chen et al. [10]. Along the way, we obtain a result, that might be of independent interest, concerning the question of when the support of the <span>\\(L_p\\)</span> surface area measure is lower dimensional. Finally, we establish a strong non-uniqueness result for the <span>\\(L_p\\)</span>-Minkowksi problem, for <span>\\(-n&lt;p&lt;0\\)</span>.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02763-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

For fixed positive integer n, \(p\in [0,1)\), \(a\in (0,1)\), we prove that if a function \(g:{\mathbb {S}}^{n-1}\rightarrow {\mathbb {R}}\) is sufficiently close to 1, in the \(C^a\) sense, then there exists a unique convex body K whose \(L_p\) curvature function equals g. This was previously established for \(n=3\), \(p=0\) by Chen et al. (Adv Math 411(A):108782, 2022) and in the symmetric case by Chen et al. (Adv Math 368:107166, 2020). Related, we show that if \(p=0\) and \(n=4\) or \(n\le 3\) and \(p\in [0,1)\), and the \(L_p\) curvature function g of a (sufficiently regular, containing the origin) convex body K satisfies \(\lambda ^{-1}\le g\le \lambda \), for some \(\lambda >1\), then \(\max _{x\in {\mathbb {S}}^{n-1}}h_K(x)\le C(p,\lambda )\), for some constant \(C(p,\lambda )>0\) that depends only on p and \(\lambda \). This also extends a result from Chen et al. [10]. Along the way, we obtain a result, that might be of independent interest, concerning the question of when the support of the \(L_p\) surface area measure is lower dimensional. Finally, we establish a strong non-uniqueness result for the \(L_p\)-Minkowksi problem, for \(-n<p<0\).

当 $$L_p$$ 曲率在 $$p\in [0,1)$$ 时接近常数时的唯一性
对于固定的正整数 n,\(p\in [0,1)\),\(a\in (0,1)\),我们证明如果一个函数 \(g:{\mathbb {S}}^{n-1}\rightarrow {\mathbb {R}}\) 在\(C^a\)意义上足够接近于 1,那么存在一个唯一的凸体 K,它的\(L_p\)曲率函数等于 g。陈等人(Adv Math 411(A):108782, 2022)曾针对\(n=3\), \(p=0\)证明了这一点,而陈等人(Adv Math 368:107166, 2020)则证明了对称情况下的\(L_p\)曲率函数等于g。与此相关,我们证明了如果(p=0)和(n=4)或者(nle 3)和(pin [0,1)),并且一个(足够规则的,包含原点的)凸体K的曲率函数g满足(lambda ^{-1}le gle \lambda \),对于某个(lambda >;1), then \(\max _{x\in {\mathbb {S}}^{n-1}}h_K(x)\le C(p,\lambda )\), for some constant \(C(p,\lambda )>0\) that depends on only p and \(\lambda\).这也扩展了 Chen 等人[10]的一个结果。在此过程中,我们得到了一个可能会引起独立兴趣的结果,它涉及到了\(L_p\)表面积度量的支持是低维时的问题。最后,我们为 \(-n<p<0\) 的 \(L_p\)-Minkowksi 问题建立了一个强非唯一性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信