Harnack inequalities and quantization properties for the $$n-$$ Liouville equation

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Pierpaolo Esposito, Marcello Lucia
{"title":"Harnack inequalities and quantization properties for the $$n-$$ Liouville equation","authors":"Pierpaolo Esposito, Marcello Lucia","doi":"10.1007/s00526-024-02777-7","DOIUrl":null,"url":null,"abstract":"<p>We consider a quasilinear equation involving the <span>\\(n-\\)</span>Laplacian and an exponential nonlinearity, a problem that includes the celebrated Liouville equation in the plane as a special case. For a non-compact sequence of solutions it is known that the exponential nonlinearity converges, up to a subsequence, to a sum of Dirac measures. By performing a precise local asymptotic analysis we complete such a result by showing that the corresponding Dirac masses are quantized as multiples of a given one, related to the mass of limiting profiles after rescaling according to the classification result obtained by the first author in Esposito (Ann. Inst. H. Poincaré Anal. Non Linéaire 35(3), 781–801, 2018). A fundamental tool is provided here by some Harnack inequality of “sup+inf\" type, a question of independent interest that we prove in the quasilinear context through a new and simple blow-up approach.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02777-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a quasilinear equation involving the \(n-\)Laplacian and an exponential nonlinearity, a problem that includes the celebrated Liouville equation in the plane as a special case. For a non-compact sequence of solutions it is known that the exponential nonlinearity converges, up to a subsequence, to a sum of Dirac measures. By performing a precise local asymptotic analysis we complete such a result by showing that the corresponding Dirac masses are quantized as multiples of a given one, related to the mass of limiting profiles after rescaling according to the classification result obtained by the first author in Esposito (Ann. Inst. H. Poincaré Anal. Non Linéaire 35(3), 781–801, 2018). A fundamental tool is provided here by some Harnack inequality of “sup+inf" type, a question of independent interest that we prove in the quasilinear context through a new and simple blow-up approach.

哈纳克不等式和 $$n-$$ 柳维尔方程的量子化性质
我们考虑的是一个涉及(n-\)拉普拉奇和指数非线性的准线性方程,这个问题包括作为特例的平面中著名的Liouville方程。众所周知,对于一个非紧凑的解序列,指数非线性在一个子序列之前收敛于狄拉克量之和。通过进行精确的局部渐近分析,我们完善了这一结果,表明相应的狄拉克质量被量化为给定质量的倍数,这与第一作者在埃斯波西托(Ann.H. Poincaré Anal.Non Linéaire 35(3), 781-801, 2018)。在这里,"sup+inf "类型的一些哈纳克不等式提供了一个基本工具,我们通过一种新的简单吹胀方法在准线性背景下证明了一个独立关注的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信