On the automorphism groups of smooth Fano threefolds

Nikolay Konovalov
{"title":"On the automorphism groups of smooth Fano threefolds","authors":"Nikolay Konovalov","doi":"arxiv-2406.03584","DOIUrl":null,"url":null,"abstract":"Let $\\mathcal{X}$ be a smooth Fano threefold over the complex numbers of\nPicard rank $1$ with finite automorphism group. We give numerical restrictions\non the order of the automorphism group $\\mathrm{Aut}(\\mathcal{X})$ provided the\ngenus $g(\\mathcal{X})\\leq 10$ and $\\mathcal{X}$ is not an ordinary smooth\nGushel-Mukai threefold. More precisely, we show that the order\n$|\\mathrm{Aut}(\\mathcal{X})|$ divides a certain explicit number depending on\nthe genus of $\\mathcal{X}$. We use a classification of Fano threefolds in terms\nof complete intersections in homogeneous varieties and the previous paper of A.\nGorinov and the author regarding the topology of spaces of regular sections.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.03584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\mathcal{X}$ be a smooth Fano threefold over the complex numbers of Picard rank $1$ with finite automorphism group. We give numerical restrictions on the order of the automorphism group $\mathrm{Aut}(\mathcal{X})$ provided the genus $g(\mathcal{X})\leq 10$ and $\mathcal{X}$ is not an ordinary smooth Gushel-Mukai threefold. More precisely, we show that the order $|\mathrm{Aut}(\mathcal{X})|$ divides a certain explicit number depending on the genus of $\mathcal{X}$. We use a classification of Fano threefolds in terms of complete intersections in homogeneous varieties and the previous paper of A. Gorinov and the author regarding the topology of spaces of regular sections.
论光滑法诺三围的自形群
让 $\mathcal{X}$ 是皮卡等级为 1$ 的复数上的光滑法诺三褶,具有有限的自形群。我们给出了关于自变群 $\mathrm{Aut}(\mathcal{X})$ 的阶的数值限制,条件是源 $g(\mathcal{X})\leq 10$,并且 $\mathcal{X}$ 不是普通的光滑古谢尔-穆凯(Gushel-Mukai)三折叠。更准确地说,我们证明了阶$|mathrm{Aut}(\mathcal{X})|$除以某个与$\mathcal{X}$的属有关的明确数。我们使用了法诺三褶在同质体完全相交方面的分类,以及戈里诺夫(A.Gorinov)和作者之前关于规则截面空间拓扑学的论文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信