Nerve Models of Subdivision Bifiltrations

Michael Lesnick, Ken McCabe
{"title":"Nerve Models of Subdivision Bifiltrations","authors":"Michael Lesnick, Ken McCabe","doi":"arxiv-2406.07679","DOIUrl":null,"url":null,"abstract":"We study the size of Sheehy's subdivision bifiltrations, up to homotopy. We\nfocus in particular on the subdivision-Rips bifiltration $\\mathcal{SR}(X)$ of a\nmetric space $X$, the only density-sensitive bifiltration on metric spaces\nknown to satisfy a strong robustness property. Given a simplicial filtration\n$\\mathcal{F}$ with a total of $m$ maximal simplices across all indices, we\nintroduce a nerve-based simplicial model for its subdivision bifiltration\n$\\mathcal{SF}$ whose $k$-skeleton has size $O(m^{k+1})$. We also show that the\n$0$-skeleton of any simplicial model of $\\mathcal{SF}$ has size at least $m$.\nWe give several applications: For an arbitrary metric space $X$, we introduce a\n$\\sqrt{2}$-approximation to $\\mathcal{SR}(X)$, denoted $\\mathcal{J}(X)$, whose\n$k$-skeleton has size $O(|X|^{k+2})$. This improves on the previous best\napproximation bound of $\\sqrt{3}$, achieved by the degree-Rips bifiltration,\nwhich implies that $\\mathcal{J}(X)$ is more robust than degree-Rips. Moreover,\nwe show that the approximation factor of $\\sqrt{2}$ is tight; in particular,\nthere exists no exact model of $\\mathcal{SR}(X)$ with poly-size skeleta. On the\nother hand, we show that for $X$ in a fixed-dimensional Euclidean space with\nthe $\\ell_p$-metric, there exists an exact model of $\\mathcal{SR}(X)$ with\npoly-size skeleta for $p\\in \\{1, \\infty\\}$, as well as a\n$(1+\\epsilon)$-approximation to $\\mathcal{SR}(X)$ with poly-size skeleta for\nany $p \\in (1, \\infty)$ and fixed ${\\epsilon > 0}$.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.07679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the size of Sheehy's subdivision bifiltrations, up to homotopy. We focus in particular on the subdivision-Rips bifiltration $\mathcal{SR}(X)$ of a metric space $X$, the only density-sensitive bifiltration on metric spaces known to satisfy a strong robustness property. Given a simplicial filtration $\mathcal{F}$ with a total of $m$ maximal simplices across all indices, we introduce a nerve-based simplicial model for its subdivision bifiltration $\mathcal{SF}$ whose $k$-skeleton has size $O(m^{k+1})$. We also show that the $0$-skeleton of any simplicial model of $\mathcal{SF}$ has size at least $m$. We give several applications: For an arbitrary metric space $X$, we introduce a $\sqrt{2}$-approximation to $\mathcal{SR}(X)$, denoted $\mathcal{J}(X)$, whose $k$-skeleton has size $O(|X|^{k+2})$. This improves on the previous best approximation bound of $\sqrt{3}$, achieved by the degree-Rips bifiltration, which implies that $\mathcal{J}(X)$ is more robust than degree-Rips. Moreover, we show that the approximation factor of $\sqrt{2}$ is tight; in particular, there exists no exact model of $\mathcal{SR}(X)$ with poly-size skeleta. On the other hand, we show that for $X$ in a fixed-dimensional Euclidean space with the $\ell_p$-metric, there exists an exact model of $\mathcal{SR}(X)$ with poly-size skeleta for $p\in \{1, \infty\}$, as well as a $(1+\epsilon)$-approximation to $\mathcal{SR}(X)$ with poly-size skeleta for any $p \in (1, \infty)$ and fixed ${\epsilon > 0}$.
细分双层神经模型
我们研究谢希细分分层的大小,直至同调。我们特别关注公度空间 $X$ 的细分-Rips 双分层 $\mathcal{SR}(X)$,这是已知公度空间上唯一满足强鲁棒性的密度敏感双分层。给定一个简单滤过$mathcal{F}$,它在所有索引中总共有$m$个最大简单,我们为它的细分双分层$mathcal{SF}$引入了一个基于神经的简单模型,其$k$骨架的大小为$O(m^{k+1})$。我们还证明了$\mathcal{SF}$的任何简单模型的$0$骨架的大小至少为$m$:对于任意度量空间 $X$,我们引入了一个与 $\mathcal{SR}(X)$类似的$sqrt{2}$,表示为 $\mathcal{J}(X)$,其$k$骨架的大小为 $O(|X|^{k+2})$。这改进了之前通过度-里普斯二分法得到的最佳近似边界$\sqrt{3}$,这意味着$\mathcal{J}(X)$比度-里普斯更稳健。此外,我们还证明了 $\sqrt{2}$ 的近似因子是紧密的;特别是,不存在具有多尺寸骨架的 $\mathcal{SR}(X)$ 精确模型。另一方面,我们证明,对于固定维度欧几里得空间中带有 $\ell_p$ 度量的 $X$,对于 $p in \{1、\in (1, \infty)$中的任意$p和固定的${epsilon > 0}$,都存在一个具有多尺寸骨架的$mathcal{SR}(X)$精确模型,以及一个$(1+\epsilon)$近似的$mathcal{SR}(X)$模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信