Smith homomorphisms and Spin$^h$ structures

Arun Debray, Cameron Krulewski
{"title":"Smith homomorphisms and Spin$^h$ structures","authors":"Arun Debray, Cameron Krulewski","doi":"arxiv-2406.08237","DOIUrl":null,"url":null,"abstract":"In this article, we answer two questions of Buchanan-McKean\n(arXiv:2312.08209) about bordism for manifolds with spin$^h$ structures: we\nestablish a Smith isomorphism between the reduced spin$^h$ bordism of\n$\\mathbb{RP}^\\infty$ and pin$^{h-}$ bordism, and we provide a geometric\nexplanation for the isomorphism $\\Omega_{4k}^{\\mathrm{Spin}^c} \\otimes\\mathbb\nZ[1/2] \\cong \\Omega_{4k}^{\\mathrm{Spin}^h} \\otimes\\mathbb Z[1/2]$. Our proofs\nuse the general theory of twisted spin structures and Smith homomorphisms that\nwe developed in arXiv:2405.04649 joint with Devalapurkar, Liu, Pacheco-Tallaj,\nand Thorngren, specifically that the Smith homomorphism participates in a long\nexact sequence with explicit, computable terms.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.08237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we answer two questions of Buchanan-McKean (arXiv:2312.08209) about bordism for manifolds with spin$^h$ structures: we establish a Smith isomorphism between the reduced spin$^h$ bordism of $\mathbb{RP}^\infty$ and pin$^{h-}$ bordism, and we provide a geometric explanation for the isomorphism $\Omega_{4k}^{\mathrm{Spin}^c} \otimes\mathbb Z[1/2] \cong \Omega_{4k}^{\mathrm{Spin}^h} \otimes\mathbb Z[1/2]$. Our proofs use the general theory of twisted spin structures and Smith homomorphisms that we developed in arXiv:2405.04649 joint with Devalapurkar, Liu, Pacheco-Tallaj, and Thorngren, specifically that the Smith homomorphism participates in a long exact sequence with explicit, computable terms.
斯密同态与 Spin$^h$ 结构
本文回答了布坎南-麦克金(arXiv:2312.08209)关于具有自旋$^h$结构的流形的边界问题:我们在$\mathbb{RP}^\infty$的还原自旋$^h$边界和pin$^{h-}$边界之间建立了史密斯同构,并为同构$\Omega_{4k}^{mathrm{Spin}^c}提供了几何解释。\cong \Omega_{4k}^{mathrm{Spin}^h}\$.我们的证明使用了我们在 arXiv:2405.04649 中与 Devalapurkar、Liu、Pacheco-Tallaj 和 Thorngren 共同开发的扭曲自旋结构和史密斯同态的一般理论,特别是史密斯同态参与了一个具有明确的、可计算项的长精确序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信