Contractibility of Vietoris-Rips Complexes of dense subsets in $(\mathbb{R}^n, \ell_1)$ via hyperconvex embeddings

Qingsong Wang
{"title":"Contractibility of Vietoris-Rips Complexes of dense subsets in $(\\mathbb{R}^n, \\ell_1)$ via hyperconvex embeddings","authors":"Qingsong Wang","doi":"arxiv-2406.08664","DOIUrl":null,"url":null,"abstract":"We consider the contractibility of Vietoris-Rips complexes of dense subsets\nof $(\\mathbb{R}^n,\\ell_1)$ with sufficiently large scales. This is motivated by\na question by Matthew Zaremsky regarding whether for each $n$ natural there is\na $r_n>0$ so that the Vietoris-Rips complex of $(\\mathbb{Z}^n,\\ell_1)$ at scale\n$r$ is contractible for all $r\\geq r_n$. We approach this question using\nresults that relates to the neighborhood of embeddings into hyperconvex metric\nspace of a metric space $X$ and its connection to the Vietoris-Rips complex of\n$X$. In this manner, we provide positive answers to the question above for the\ncase $n=2$ and $3$.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.08664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the contractibility of Vietoris-Rips complexes of dense subsets of $(\mathbb{R}^n,\ell_1)$ with sufficiently large scales. This is motivated by a question by Matthew Zaremsky regarding whether for each $n$ natural there is a $r_n>0$ so that the Vietoris-Rips complex of $(\mathbb{Z}^n,\ell_1)$ at scale $r$ is contractible for all $r\geq r_n$. We approach this question using results that relates to the neighborhood of embeddings into hyperconvex metric space of a metric space $X$ and its connection to the Vietoris-Rips complex of $X$. In this manner, we provide positive answers to the question above for the case $n=2$ and $3$.
通过超凸嵌入看 $(\mathbb{R}^n, \ell_1)$ 中密集子集的 Vietoris-Rips 复合物的可收缩性
我们考虑了具有足够大尺度的$(\mathbb{R}^n,\ell_1)$的致密子集的Vietoris-Rips复合体的可收缩性。这是由马修-扎伦斯基(Matthew Zaremsky)提出的一个问题引起的,即对于每一个 $n$ 自然数,是否存在一个 $r_n>0$ 使得尺度为 $r$ 的 $(\mathbb{Z}^n,\ell_1)$的 Vietoris-Rips 复集对于所有 $r\geq r_n$ 都是可收缩的。我们利用与度量空间 $X$ 的超凸度量空间嵌入邻域及其与 $X$ 的 Vietoris-Rips 复数的联系有关的结果来探讨这个问题。通过这种方法,我们对 $n=2$ 和 $3$ 的情况给出了上述问题的肯定答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信