A topological analysis of the space of recipes

Emerson G. Escolar, Yuta Shimada, Masahiro Yuasa
{"title":"A topological analysis of the space of recipes","authors":"Emerson G. Escolar, Yuta Shimada, Masahiro Yuasa","doi":"arxiv-2406.09445","DOIUrl":null,"url":null,"abstract":"In recent years, the use of data-driven methods has provided insights into\nunderlying patterns and principles behind culinary recipes. In this exploratory\nwork, we introduce the use of topological data analysis, especially persistent\nhomology, in order to study the space of culinary recipes. In particular,\npersistent homology analysis provides a set of recipes surrounding the\nmultiscale \"holes\" in the space of existing recipes. We then propose a method\nto generate novel ingredient combinations using combinatorial optimization on\nthis topological information. We made biscuits using the novel ingredient\ncombinations, which were confirmed to be acceptable enough by a sensory\nevaluation study. Our findings indicate that topological data analysis has the\npotential for providing new tools and insights in the study of culinary\nrecipes.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"173 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.09445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, the use of data-driven methods has provided insights into underlying patterns and principles behind culinary recipes. In this exploratory work, we introduce the use of topological data analysis, especially persistent homology, in order to study the space of culinary recipes. In particular, persistent homology analysis provides a set of recipes surrounding the multiscale "holes" in the space of existing recipes. We then propose a method to generate novel ingredient combinations using combinatorial optimization on this topological information. We made biscuits using the novel ingredient combinations, which were confirmed to be acceptable enough by a sensory evaluation study. Our findings indicate that topological data analysis has the potential for providing new tools and insights in the study of culinary recipes.
食谱空间的拓扑分析
近年来,数据驱动方法的使用让人们深入了解了烹饪食谱背后的基本模式和原理。在这项探索性工作中,我们介绍了拓扑数据分析的使用,特别是持久同源性,以研究烹饪食谱的空间。特别是,持久同源性分析提供了一组围绕现有食谱空间中多尺度 "洞 "的食谱。然后,我们提出了一种方法,利用这种拓扑信息进行组合优化,生成新的配料组合。我们使用这些新的配料组合制作了饼干,并通过感官评估研究证实这些饼干是可以接受的。我们的研究结果表明,拓扑数据分析有望为烹饪配方研究提供新的工具和见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信