$ \mathbb{Z}_{2} $- homology of the orbit spaces $ G_{n,2}/ T^{n} $

Vladimir Ivanović, Svjetlana Terzić
{"title":"$ \\mathbb{Z}_{2} $- homology of the orbit spaces $ G_{n,2}/ T^{n} $","authors":"Vladimir Ivanović, Svjetlana Terzić","doi":"arxiv-2406.11625","DOIUrl":null,"url":null,"abstract":"We study the $\\mathbb{Z}_2$-homology groups of the orbit space $X_n =\nG_{n,2}/T^n$ for the canonical action of the compact torus $T^n$ on a complex\nGrassmann manifold $G_{n,2}$. Our starting point is the model $(U_n, p_n)$ for\n$X_n$ constructed by Buchstaber and Terzi\\'c (2020), where $U_n = \\Delta\n_{n,2}\\times \\mathcal{F}_{n}$ for a hypersimplex $\\Delta_{n,2}$ and an\nuniversal space of parameters $\\mathcal{F}_{n}$ defined in Buchstaber and\nTerzi\\'c (2019), (2020). It is proved by Buchstaber and Terzi\\'c (2021) that\n$\\mathcal{F}_{n}$ is diffeomorphic to the moduli space $\\mathcal{M}_{0,n}$ of\nstable $n$-pointed genus zero curves. We exploit the results from Keel (1992)\nand Ceyhan (2009) on homology groups of $\\mathcal{M}_{0,n}$ and express them in\nterms of the stratification of $\\mathcal{F}_{n}$ which are incorporated in the\nmodel $(U_n, p_n)$. In the result we provide the description of cycles in\n$X_n$, inductively on $ n. $ We obtain as well explicit formulas for\n$\\mathbb{Z}_2$-homology groups for $X_5$ and $X_6$. The results for $X_5$\nrecover by different method the results from Buchstaber and Terzi\\'c (2021) and\nS\\\"uss (2020). The results for $X_6$ we consider to be new.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.11625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the $\mathbb{Z}_2$-homology groups of the orbit space $X_n = G_{n,2}/T^n$ for the canonical action of the compact torus $T^n$ on a complex Grassmann manifold $G_{n,2}$. Our starting point is the model $(U_n, p_n)$ for $X_n$ constructed by Buchstaber and Terzi\'c (2020), where $U_n = \Delta _{n,2}\times \mathcal{F}_{n}$ for a hypersimplex $\Delta_{n,2}$ and an universal space of parameters $\mathcal{F}_{n}$ defined in Buchstaber and Terzi\'c (2019), (2020). It is proved by Buchstaber and Terzi\'c (2021) that $\mathcal{F}_{n}$ is diffeomorphic to the moduli space $\mathcal{M}_{0,n}$ of stable $n$-pointed genus zero curves. We exploit the results from Keel (1992) and Ceyhan (2009) on homology groups of $\mathcal{M}_{0,n}$ and express them in terms of the stratification of $\mathcal{F}_{n}$ which are incorporated in the model $(U_n, p_n)$. In the result we provide the description of cycles in $X_n$, inductively on $ n. $ We obtain as well explicit formulas for $\mathbb{Z}_2$-homology groups for $X_5$ and $X_6$. The results for $X_5$ recover by different method the results from Buchstaber and Terzi\'c (2021) and S\"uss (2020). The results for $X_6$ we consider to be new.
$ \mathbb{Z}_{2} $- 轨道空间的同源性 $ G_{n,2}/ T^{n} $
我们研究紧凑环$T^n$在复格拉斯曼流形$G_{n,2}$上的规范作用的轨道空间$X_n =G_{n,2}/T^n$ 的$\mathbb{Z}_2$同调群。我们的出发点是Buchstaber和Terzi\'c (2020)为$X_n$构建的模型$(U_n, p_n)$,其中$U_n = \Delta_{n,2}\times \mathcal{F}_{n}$为Buchstaber和Terzi\'c (2019), (2020)中定义的超复数$\Delta_{n,2}$和参数通用空间$\mathcal{F}_{n}$。Buchstaber 和 Terzi\'c (2021) 证明,$\mathcal{F}_{n}$ 与稳定的 $n$ 点属零曲线的模空间 $\mathcal{M}_{0,n}$ 是差分同构的。我们利用 Keel (1992) 和 Ceyhan (2009) 关于 $\mathcal{M}_{0,n}$ 的同调群的结果,并用 $\mathcal{F}_{n}$ 的分层来表达它们,这些分层被纳入模型 $(U_n, p_n)$ 中。我们还得到了 $X_5$ 和 $X_6$ 的$mathbb{Z}_2$同调群的明确公式。$X_5$ 的结果用不同的方法恢复了 Buchstaber and Terzi\'c (2021) 和 S\"uss (2020) 的结果。我们认为 $X_6$ 的结果是新的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信