Intertwining category and complexity

Ekansh Jauhari
{"title":"Intertwining category and complexity","authors":"Ekansh Jauhari","doi":"arxiv-2406.12265","DOIUrl":null,"url":null,"abstract":"We develop the theory of the intertwining distributional versions of the\nLS-category and the sequential topological complexities of a space $X$, denoted\nby $i\\mathsf{cat}(X)$ and $i\\mathsf{TC}_m(X)$, respectively. We prove that they\nsatisfy most of the nice properties as their respective distributional\ncounterparts $d\\mathsf{cat}(X)$ and $d\\mathsf{TC}_m(X)$, and their classical\ncounterparts $\\mathsf{cat}(X)$ and $\\mathsf{TC}_m(X)$, such as homotopy\ninvariance and special behavior on topological groups. We show that the notions\nof $i\\mathsf{TC}_m$ and $d\\mathsf{TC}_m$ are different for each $m \\ge 2$ by\nproving that $i\\mathsf{TC}_m(\\mathcal{H})=1$ for all $m \\ge 2$ for Higman's\ngroup $\\mathcal{H}$. Using cohomological lower bounds, we also provide various\nexamples of locally finite CW complexes $X$ for which $i\\mathsf{cat}(X) > 1$,\n$i\\mathsf{TC}_m(X) > 1$, $i\\mathsf{cat}(X) = d\\mathsf{cat}(X) =\n\\mathsf{cat}(X)$, and $i\\mathsf{TC}(X) = d\\mathsf{TC}(X) = \\mathsf{TC}(X)$.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.12265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We develop the theory of the intertwining distributional versions of the LS-category and the sequential topological complexities of a space $X$, denoted by $i\mathsf{cat}(X)$ and $i\mathsf{TC}_m(X)$, respectively. We prove that they satisfy most of the nice properties as their respective distributional counterparts $d\mathsf{cat}(X)$ and $d\mathsf{TC}_m(X)$, and their classical counterparts $\mathsf{cat}(X)$ and $\mathsf{TC}_m(X)$, such as homotopy invariance and special behavior on topological groups. We show that the notions of $i\mathsf{TC}_m$ and $d\mathsf{TC}_m$ are different for each $m \ge 2$ by proving that $i\mathsf{TC}_m(\mathcal{H})=1$ for all $m \ge 2$ for Higman's group $\mathcal{H}$. Using cohomological lower bounds, we also provide various examples of locally finite CW complexes $X$ for which $i\mathsf{cat}(X) > 1$, $i\mathsf{TC}_m(X) > 1$, $i\mathsf{cat}(X) = d\mathsf{cat}(X) = \mathsf{cat}(X)$, and $i\mathsf{TC}(X) = d\mathsf{TC}(X) = \mathsf{TC}(X)$.
类别与复杂性交织
我们发展了一个空间 $X$ 的交织分布范畴和序列拓扑复杂性的理论,分别用 $i\mathsf{cat}(X)$ 和 $i\mathsf{TC}_m(X)$ 表示。我们证明,它们与它们各自的分布对应物 $d\mathsf{cat}(X)$ 和 $d\mathsf{TC}_m(X)$,以及它们的经典对应物 $\mathsf{cat}(X)$ 和 $\mathsf{TC}_m(X)$ 一样,满足了大多数漂亮的性质,比如同调不变性和在拓扑群上的特殊行为。我们通过证明对于希格曼群 $\mathcal{H}$ 的所有 $m \ge 2$,$i/mathsf{TC}_m(\mathcal{H})=1$,证明 $i\mathsf{TC}_m$ 和 $d\mathsf{TC}_m$ 的概念对于每个 $m \ge 2$ 都是不同的。利用同调下界,我们还提供了$i\mathsf{cat}(X) > 1$ 的局部有限 CW 复数 $X$ 的各种实例、$i\mathsf{TC}_m(X) > 1$,$i/mathsf{cat}(X) = d\mathsf{cat}(X) =\mathsf{cat}(X)$ 以及 $i\mathsf{TC}(X) = d\mathsf{TC}(X) = \mathsf{TC}(X)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信