The Dual Degree Cech Bifiltration

Morten Brun
{"title":"The Dual Degree Cech Bifiltration","authors":"Morten Brun","doi":"arxiv-2407.00477","DOIUrl":null,"url":null,"abstract":"In topological data analysis (TDA), a longstanding challenge is to recognize\nunderlying geometric structures in noisy data. One motivating examples is the\nshape of a point cloud in Euclidean space given by image. Carlsson et al.\nproposed a method to detect topological features in point clouds by first\nfiltering by density and then applying persistent homology. Later more refined\nmethods have been developed, such as the degree Rips complex of Lesnick and\nWright and the multicover bifiltration. In this paper we introduce the dual\nDegree Cech bifiltration, a Prohorov stable bicomplex of a point cloud in a\nmetric space with the point cloud itself as vertex set. It is of the same\nhomotopy type as the Measure Dowker bifiltration of Hellmer and Spali\\'nski but\nit has a different vertex set. The dual Degree Cech bifiltration can be constructed both in an ambient and\nan intrinsic way. The intrinsic dual Degree Cech bifiltration is a\n$(1,2)$-intereaved with the ambent dual Degree Cech bifiltration in the\ndistance parameter. This interleaving can be used to leverage a stability\nresult for the intrinsically defined dual Degree Cech bifiltration. This\nstability result recently occured in work by Hellmer and Spali\\'nski.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.00477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In topological data analysis (TDA), a longstanding challenge is to recognize underlying geometric structures in noisy data. One motivating examples is the shape of a point cloud in Euclidean space given by image. Carlsson et al. proposed a method to detect topological features in point clouds by first filtering by density and then applying persistent homology. Later more refined methods have been developed, such as the degree Rips complex of Lesnick and Wright and the multicover bifiltration. In this paper we introduce the dual Degree Cech bifiltration, a Prohorov stable bicomplex of a point cloud in a metric space with the point cloud itself as vertex set. It is of the same homotopy type as the Measure Dowker bifiltration of Hellmer and Spali\'nski but it has a different vertex set. The dual Degree Cech bifiltration can be constructed both in an ambient and an intrinsic way. The intrinsic dual Degree Cech bifiltration is a $(1,2)$-intereaved with the ambent dual Degree Cech bifiltration in the distance parameter. This interleaving can be used to leverage a stability result for the intrinsically defined dual Degree Cech bifiltration. This stability result recently occured in work by Hellmer and Spali\'nski.
双度 Cech 双滤技术
在拓扑数据分析(TDA)中,一个长期存在的挑战是识别噪声数据中潜在的几何结构。其中一个激励性的例子是图像给出的欧几里得空间中点云的形状。Carlsson 等人提出了一种检测点云拓扑特征的方法,首先通过密度过滤,然后应用持久同源性。后来,人们又开发出了更精细的方法,如莱斯尼克和赖特的度里普斯复合法以及多覆盖分层法。在本文中,我们介绍了对偶度 Cech 双分层,即以点云本身为顶点集的对称空间中点云的普罗霍罗夫稳定双复数。它与赫尔默和斯帕利斯基的度量道克二分层属于同一同调类型,但它的顶点集不同。对偶 Degree Cech 双分层可以通过环境和内在两种方式构造。内在的对偶 Degree Cech 双分层与外在的对偶 Degree Cech 双分层在距离参数上是$(1,2)$交错的。这种交错可以用来利用内在定义的双度切赫分层的稳定性结果。这一稳定性结果最近出现在 Hellmer 和 Spali\'nski 的研究中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信