Formality of $\mathbb{E}_n$-algebras and cochains on spheres

Gijs Heuts, Markus Land
{"title":"Formality of $\\mathbb{E}_n$-algebras and cochains on spheres","authors":"Gijs Heuts, Markus Land","doi":"arxiv-2407.00790","DOIUrl":null,"url":null,"abstract":"We study the loop and suspension functors on the category of augmented\n$\\mathbb{E}_n$-algebras. One application is to the formality of the cochain\nalgebra of the $n$-sphere. We show that it is formal as an\n$\\mathbb{E}_n$-algebra, also with coefficients in general commutative ring\nspectra, but rarely $\\mathbb{E}_{n+1}$-formal unless the coefficients are\nrational. Along the way we show that the free functor from operads in spectra\nto monads in spectra is fully faithful on a nice subcategory of operads which\nin particular contains the stable $\\mathbb{E}_n$-operads for finite $n$. We use\nthis to interpret our results on loop and suspension functors of augmented\nalgebras in operadic terms.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.00790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the loop and suspension functors on the category of augmented $\mathbb{E}_n$-algebras. One application is to the formality of the cochain algebra of the $n$-sphere. We show that it is formal as an $\mathbb{E}_n$-algebra, also with coefficients in general commutative ring spectra, but rarely $\mathbb{E}_{n+1}$-formal unless the coefficients are rational. Along the way we show that the free functor from operads in spectra to monads in spectra is fully faithful on a nice subcategory of operads which in particular contains the stable $\mathbb{E}_n$-operads for finite $n$. We use this to interpret our results on loop and suspension functors of augmented algebras in operadic terms.
球上 $\mathbb{E}_n$ 算法和共链的形式性
我们研究了增$\mathbb{E}_n$-代数范畴上的循环和悬浮函数。其中一个应用是 $n$ 球的共链代数的形式化。我们证明它作为$\mathbb{E}_n$代数是形式的,在一般交换环谱中也有系数,但除非系数是有理的,否则很少是$\mathbb{E}_{n+1}$形式的。在此过程中,我们证明了从谱中的操作数到谱中的单子的自由函子在一个很好的操作数子类上是完全忠实的,这个子类尤其包含有限 $n$ 的稳定 $\mathbb{E}_n$ 操作数。我们将用它来解释我们用操作数术语解释增强代数的循环和悬浮函子的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信