A TO-CAN DFB Laser With Transmission Line Impedance Transformer for Analog Optical Link

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Congbiao Lei;Yuxuan Jiang;Guangcheng Zhong;Liang Xie
{"title":"A TO-CAN DFB Laser With Transmission Line Impedance Transformer for Analog Optical Link","authors":"Congbiao Lei;Yuxuan Jiang;Guangcheng Zhong;Liang Xie","doi":"10.1109/JPHOT.2024.3422269","DOIUrl":null,"url":null,"abstract":"A transmission line (TL) impedance transformer of through-hole (TO)-CAN distributed feedback (DFB) laser is proposed and fabricated. The gain and noise factor (NF) of analog optical link can be improved by optimizing the laser impedance matching network. The radio frequency (RF) package of DFB is optimized to extend bandwidth and reduce return loss. In this paper, a flexible printed circuit (FPC) with low-loss impedance matching network is designed to improved the RF characteristics of TO-CAN DFB laser. The return path between FPC and TO-CAN is optimized to eliminate microwave resonances. The small signal model of an analog optical link is analyzed in detail. The measured frequency response of the TO-CAN DFB is 18.4 GHz. The microwave reflection is below −10 dB. The measured results correlates perfectly with the simulated results. The gain of analog optical link is increased by 3 dB. The NF is also reduced by about 2.5 dB.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10582283","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10582283/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A transmission line (TL) impedance transformer of through-hole (TO)-CAN distributed feedback (DFB) laser is proposed and fabricated. The gain and noise factor (NF) of analog optical link can be improved by optimizing the laser impedance matching network. The radio frequency (RF) package of DFB is optimized to extend bandwidth and reduce return loss. In this paper, a flexible printed circuit (FPC) with low-loss impedance matching network is designed to improved the RF characteristics of TO-CAN DFB laser. The return path between FPC and TO-CAN is optimized to eliminate microwave resonances. The small signal model of an analog optical link is analyzed in detail. The measured frequency response of the TO-CAN DFB is 18.4 GHz. The microwave reflection is below −10 dB. The measured results correlates perfectly with the simulated results. The gain of analog optical link is increased by 3 dB. The NF is also reduced by about 2.5 dB.
用于模拟光链路的带有传输线阻抗变换器的 TO-CAN DFB 激光器
本文提出并制作了一种通孔(TO)-CAN 分布式反馈(DFB)激光器的传输线(TL)阻抗变压器。通过优化激光阻抗匹配网络,可以提高模拟光链路的增益和噪声系数(NF)。DFB 的射频(RF)封装经过优化,可扩展带宽并降低回波损耗。本文设计了带有低损耗阻抗匹配网络的柔性印刷电路(FPC),以改善 TO-CAN DFB 激光器的射频特性。FPC 和 TO-CAN 之间的回波路径经过优化,以消除微波谐振。详细分析了模拟光链路的小信号模型。测得的 TO-CAN DFB 频率响应为 18.4 GHz。微波反射低于 -10 dB。测量结果与模拟结果完全吻合。模拟光链路的增益提高了 3 dB。NF 也降低了约 2.5 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Photonics Journal
IEEE Photonics Journal ENGINEERING, ELECTRICAL & ELECTRONIC-OPTICS
CiteScore
4.50
自引率
8.30%
发文量
489
审稿时长
1.4 months
期刊介绍: Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信