Three-Dimensionally Arranged NiSe2 Nanosheets as an Efficient Electrocatalyst for Methanol Electrooxidation Reaction

IF 3.6 4区 工程技术 Q3 ENERGY & FUELS
Nabi Ullah, Dariusz Guziejewski, Asim Mahmood, Sami Ullah, Sikandar Khan, Shahid Hussain, Muhammad Imran
{"title":"Three-Dimensionally Arranged NiSe2 Nanosheets as an Efficient Electrocatalyst for Methanol Electrooxidation Reaction","authors":"Nabi Ullah,&nbsp;Dariusz Guziejewski,&nbsp;Asim Mahmood,&nbsp;Sami Ullah,&nbsp;Sikandar Khan,&nbsp;Shahid Hussain,&nbsp;Muhammad Imran","doi":"10.1002/ente.202400390","DOIUrl":null,"url":null,"abstract":"<p>Methanol oxidation stands out as a pivotal solution in addressing the global energy crisis and environmental pollution, owing to its practical applicability, high current density, and the ready availability of methanol as a fuel source. To effectively catalyze methanol oxidation, an electrocatalyst is imperious to overcome the activation energy barrier. Herein, a three-dimensionally arranged NiSe<sub>2</sub> nanosheet-based electrocatalyst is synthesized through a facile solvothermal followed by an annealing method. The catalyst's porous structure enhances catalytic efficiency by providing a substantial electrochemical surface area (ECSA) equivalent to 0.121 mF cm<sup>−2</sup>. Notably, the electrocatalyst exhibits a remarkable response of 21.58 mA cm<sup>−2</sup> at an overpotential of 1.70 V vs RHE, accompanied by the lowest Tafel slope recorded at 39.14 mV dec<sup>−1</sup>. The electronic circuit, represented by <i>R</i><sub>s</sub>(<i>Q</i><sub>f</sub>(<i>R</i><sub>f</sub><i>W</i>(<i>Q</i><sub>dl</sub><i>R</i><sub>ct</sub>)), aligns well with electrochemical impedance spectroscopy data, elucidating the reaction path and intrinsic properties. Furthermore, the catalytic performance is elucidated concerning ECSA and weight, revealing current densities of 5.60 mA cm<sup>−2</sup> and 71.34 mA mg<sup>−1</sup>, respectively. Impressively, the catalyst demonstrates exceptional resistance to poisoning and sustained stability over a continuous 3600-s operation. This comprehensive study underscores the promising potential of the NiSe<sub>2</sub> nanosheet-based electrocatalyst for efficient methanol oxidation, providing valuable insights for advancing clean energy technologies.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202400390","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Methanol oxidation stands out as a pivotal solution in addressing the global energy crisis and environmental pollution, owing to its practical applicability, high current density, and the ready availability of methanol as a fuel source. To effectively catalyze methanol oxidation, an electrocatalyst is imperious to overcome the activation energy barrier. Herein, a three-dimensionally arranged NiSe2 nanosheet-based electrocatalyst is synthesized through a facile solvothermal followed by an annealing method. The catalyst's porous structure enhances catalytic efficiency by providing a substantial electrochemical surface area (ECSA) equivalent to 0.121 mF cm−2. Notably, the electrocatalyst exhibits a remarkable response of 21.58 mA cm−2 at an overpotential of 1.70 V vs RHE, accompanied by the lowest Tafel slope recorded at 39.14 mV dec−1. The electronic circuit, represented by Rs(Qf(RfW(QdlRct)), aligns well with electrochemical impedance spectroscopy data, elucidating the reaction path and intrinsic properties. Furthermore, the catalytic performance is elucidated concerning ECSA and weight, revealing current densities of 5.60 mA cm−2 and 71.34 mA mg−1, respectively. Impressively, the catalyst demonstrates exceptional resistance to poisoning and sustained stability over a continuous 3600-s operation. This comprehensive study underscores the promising potential of the NiSe2 nanosheet-based electrocatalyst for efficient methanol oxidation, providing valuable insights for advancing clean energy technologies.

Abstract Image

三维排列的 NiSe2 纳米片作为甲醇电氧化反应的高效电催化剂
甲醇氧化是解决全球能源危机和环境污染问题的关键解决方案,这是因为它具有实用性、高电流密度以及甲醇可随时用作燃料。要有效催化甲醇氧化,必须使用电催化剂来克服活化能障碍。本文通过简单的溶热法和退火法合成了一种三维排列的 NiSe2 纳米片基电催化剂。催化剂的多孔结构提供了相当于 0.121 mF cm-2 的巨大电化学表面积 (ECSA),从而提高了催化效率。值得注意的是,在过电位为 1.70 V vs RHE 时,该电催化剂显示出 21.58 mA cm-2 的显著响应,同时记录到的最低塔菲尔斜率为 39.14 mV dec-1。以 Rs(Qf(RfW(QdlRct)) 表示的电子电路与电化学阻抗谱数据非常吻合,阐明了反应路径和内在特性。此外,该催化剂的催化性能还与 ECSA 和重量有关,其电流密度分别为 5.60 mA cm-2 和 71.34 mA mg-1。令人印象深刻的是,该催化剂在连续 3600 秒的运行过程中表现出卓越的抗中毒能力和持续稳定性。这项综合研究强调了基于 NiSe2 纳米片的电催化剂在高效甲醇氧化方面的巨大潜力,为推动清洁能源技术的发展提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy technology
Energy technology ENERGY & FUELS-
CiteScore
7.00
自引率
5.30%
发文量
0
审稿时长
1.3 months
期刊介绍: Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy. This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g., new concepts of energy generation and conversion; design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers; improvement of existing processes; combination of single components to systems for energy generation; design of systems for energy storage; production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels; concepts and design of devices for energy distribution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信