{"title":"A Novel Approach to Evaluate Robotic in Vitro Chewing Effect on Food Bolus Formation Using the GLCM Image Analysis Technique","authors":"Isurie Akarawita;Bangxiang Chen;Jaspreet Singh Dhupia;Martin Stommel;Weiliang Xu","doi":"10.1109/OJIES.2024.3421649","DOIUrl":null,"url":null,"abstract":"In the context of food science and engineering, the in vitro chewing effect on food bolus formation is a critical area of research that explores the mechanical and textural properties of ingested materials. This article presents a pioneering approach to assess the in vitro chewing impact on food bolus formation using the gray level co-occurrence matrix (GLCM) image analysis technique. As technological advancements lead to the development of mastication robots, the need for evaluating in vitro chewed food bolus has grown. To address this challenge, a case study is conducted. The study's objectives encompass utilizing GLCM to determine the in vitro chewing cycle phase, analyzing texture features, and investigating chewing trajectory differences for beef and plant-based burger patties. Applying GLCM as a methodology, the research quantitatively analyzes textural features of food bolus formations under controlled in vitro chewing conditions. The outcomes reveal distinct differences between beef and plant-based samples through GLCM parameters. Significantly, the study identifies a consistent trend across various scenarios, indicating an increase in energy and homogeneity and a decrease in dissimilarity with an increasing number of in vitro chewing cycles. This investigation offers valuable insights into the dynamic relationship between chewing cycles and textural features in the oral processing of beef and plant-based burger patties.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"682-691"},"PeriodicalIF":5.2000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10582430","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10582430/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In the context of food science and engineering, the in vitro chewing effect on food bolus formation is a critical area of research that explores the mechanical and textural properties of ingested materials. This article presents a pioneering approach to assess the in vitro chewing impact on food bolus formation using the gray level co-occurrence matrix (GLCM) image analysis technique. As technological advancements lead to the development of mastication robots, the need for evaluating in vitro chewed food bolus has grown. To address this challenge, a case study is conducted. The study's objectives encompass utilizing GLCM to determine the in vitro chewing cycle phase, analyzing texture features, and investigating chewing trajectory differences for beef and plant-based burger patties. Applying GLCM as a methodology, the research quantitatively analyzes textural features of food bolus formations under controlled in vitro chewing conditions. The outcomes reveal distinct differences between beef and plant-based samples through GLCM parameters. Significantly, the study identifies a consistent trend across various scenarios, indicating an increase in energy and homogeneity and a decrease in dissimilarity with an increasing number of in vitro chewing cycles. This investigation offers valuable insights into the dynamic relationship between chewing cycles and textural features in the oral processing of beef and plant-based burger patties.
期刊介绍:
The IEEE Open Journal of the Industrial Electronics Society is dedicated to advancing information-intensive, knowledge-based automation, and digitalization, aiming to enhance various industrial and infrastructural ecosystems including energy, mobility, health, and home/building infrastructure. Encompassing a range of techniques leveraging data and information acquisition, analysis, manipulation, and distribution, the journal strives to achieve greater flexibility, efficiency, effectiveness, reliability, and security within digitalized and networked environments.
Our scope provides a platform for discourse and dissemination of the latest developments in numerous research and innovation areas. These include electrical components and systems, smart grids, industrial cyber-physical systems, motion control, robotics and mechatronics, sensors and actuators, factory and building communication and automation, industrial digitalization, flexible and reconfigurable manufacturing, assistant systems, industrial applications of artificial intelligence and data science, as well as the implementation of machine learning, artificial neural networks, and fuzzy logic. Additionally, we explore human factors in digitalized and networked ecosystems. Join us in exploring and shaping the future of industrial electronics and digitalization.