{"title":"Multiscale acoustical study on graphene oxide impregnated polyurethane foam","authors":"Sung Soo Yang, Inhwa Jung, Yeon June Kang","doi":"10.1007/s13233-024-00281-7","DOIUrl":null,"url":null,"abstract":"<div><p>This study examines the multiscale acoustic properties of sound-absorbing polyurethane (PU) foam impregnated with graphene oxide (GO). GO impregnation into the PU foam was achieved through a vacuum-assisted process. The effects of GO impregnation on the macroscopic acoustic behavior, transport parameters, and sound absorption coefficients were investigated. Scanning electron microscopy images revealed that the impregnated GO enveloped the open pores within the porous structure. Geometric parameters derived from the microstructural observations were used to perform acoustic simulations. Models with partially open cells could be used to accurately predict the transport parameters and sound absorption coefficients of foams with low levels of GO impregnation. For foams with high levels of GO impregnation, it was necessary to incorporate closed cells into the model, which significantly enhanced the prediction accuracy for the transport parameters and sound absorption coefficients. This study advances our understanding of the acoustic properties of GO-impregnated PU foams and will be beneficial for developing more effective sound-absorbing materials.</p><h3>Graphical abstract</h3><p>Acoustical characterization of graphene oxide impregnated polyurethane foam</p>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":688,"journal":{"name":"Macromolecular Research","volume":"32 10","pages":"935 - 946"},"PeriodicalIF":2.8000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13233-024-00281-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This study examines the multiscale acoustic properties of sound-absorbing polyurethane (PU) foam impregnated with graphene oxide (GO). GO impregnation into the PU foam was achieved through a vacuum-assisted process. The effects of GO impregnation on the macroscopic acoustic behavior, transport parameters, and sound absorption coefficients were investigated. Scanning electron microscopy images revealed that the impregnated GO enveloped the open pores within the porous structure. Geometric parameters derived from the microstructural observations were used to perform acoustic simulations. Models with partially open cells could be used to accurately predict the transport parameters and sound absorption coefficients of foams with low levels of GO impregnation. For foams with high levels of GO impregnation, it was necessary to incorporate closed cells into the model, which significantly enhanced the prediction accuracy for the transport parameters and sound absorption coefficients. This study advances our understanding of the acoustic properties of GO-impregnated PU foams and will be beneficial for developing more effective sound-absorbing materials.
Graphical abstract
Acoustical characterization of graphene oxide impregnated polyurethane foam
本研究探讨了浸渍氧化石墨烯(GO)的吸音聚氨酯(PU)泡沫的多尺度声学特性。氧化石墨烯是通过真空辅助工艺浸渍到聚氨酯泡沫中的。研究了浸渍 GO 对宏观声学行为、传输参数和吸声系数的影响。扫描电子显微镜图像显示,浸渍的 GO 包覆了多孔结构中的开放孔隙。根据微观结构观察得出的几何参数被用于进行声学模拟。具有部分开放孔隙的模型可用于准确预测浸渍了少量 GO 的泡沫的传输参数和吸声系数。对于浸渍了大量 GO 的泡沫,有必要在模型中加入闭孔,这样可以显著提高传输参数和吸声系数的预测精度。这项研究加深了我们对浸渍 GO 的聚氨酯泡沫声学特性的理解,将有助于开发更有效的吸音材料。 图文摘要浸渍氧化石墨烯聚氨酯泡沫的声学表征
期刊介绍:
Original research on all aspects of polymer science, engineering and technology, including nanotechnology
Presents original research articles on all aspects of polymer science, engineering and technology
Coverage extends to such topics as nanotechnology, biotechnology and information technology
The English-language journal of the Polymer Society of Korea
Macromolecular Research is a scientific journal published monthly by the Polymer Society of Korea. Macromolecular Research publishes original researches on all aspects of polymer science, engineering, and technology as well as new emerging technologies using polymeric materials including nanotechnology, biotechnology, and information technology in forms of Articles, Communications, Notes, Reviews, and Feature articles.