Arithmetic Bohr radius for the Minkowski space

IF 1 3区 数学 Q1 MATHEMATICS
Vasudevarao Allu, Himadri Halder, Subhadip Pal
{"title":"Arithmetic Bohr radius for the Minkowski space","authors":"Vasudevarao Allu, Himadri Halder, Subhadip Pal","doi":"10.1515/forum-2023-0425","DOIUrl":null,"url":null,"abstract":"The main aim of this paper is to study the arithmetic Bohr radius for holomorphic functions defined on a Reinhardt domain in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ℂ</m:mi> <m:mi>n</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0425_eq_0135.png\"/> <jats:tex-math>{\\mathbb{C}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with positive real part. The present investigation is motivated by the work of Lev Aizenberg [Proc. Amer. Math. Soc. 128 (2000), 2611–2619]. A part of our study in the present paper includes a connection between the classical Bohr radius and the arithmetic Bohr radius of unit ball in the Minkowski space <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mi mathvariant=\"normal\">ℓ</m:mi> <m:mi>q</m:mi> <m:mi>n</m:mi> </m:msubsup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0425_eq_0119.png\"/> <jats:tex-math>{\\ell^{n}_{q}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>1</m:mn> <m:mo>≤</m:mo> <m:mi>q</m:mi> <m:mo>≤</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0425_eq_0078.png\"/> <jats:tex-math>{1\\leq q\\leq\\infty}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Further, we determine the exact value of a Bohr radius in terms of arithmetic Bohr radius.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"7 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0425","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The main aim of this paper is to study the arithmetic Bohr radius for holomorphic functions defined on a Reinhardt domain in n {\mathbb{C}^{n}} with positive real part. The present investigation is motivated by the work of Lev Aizenberg [Proc. Amer. Math. Soc. 128 (2000), 2611–2619]. A part of our study in the present paper includes a connection between the classical Bohr radius and the arithmetic Bohr radius of unit ball in the Minkowski space q n {\ell^{n}_{q}} , 1 q {1\leq q\leq\infty} . Further, we determine the exact value of a Bohr radius in terms of arithmetic Bohr radius.
闵科夫斯基空间的算术玻尔半径
本文的主要目的是研究定义在ℂ n {\mathbb{C}^{n} 中具有正实部的莱因哈特域上的全形函数的算术玻尔半径。本研究受 Lev Aizenberg [Proc. Amer. Math. Soc. 128 (2000), 2611-2619] 的工作启发。本文研究的一部分包括经典玻尔半径与闵科夫斯基空间中单位球的算术玻尔半径 ℓ q n {\ell^{n}_{q}} 之间的联系。 1 ≤ q ≤ ∞ {1\leq q\leq\infty} 。此外,我们用算术玻尔半径来确定玻尔半径的精确值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信