The Weil bound for generalized Kloosterman sums of half-integral weight

IF 1 3区 数学 Q1 MATHEMATICS
Nickolas Andersen, Gradin Anderson, Amy Woodall
{"title":"The Weil bound for generalized Kloosterman sums of half-integral weight","authors":"Nickolas Andersen, Gradin Anderson, Amy Woodall","doi":"10.1515/forum-2023-0367","DOIUrl":null,"url":null,"abstract":"Let <jats:italic>L</jats:italic> be an even lattice of odd rank with discriminant group <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mo>′</m:mo> </m:msup> <m:mo>/</m:mo> <m:mi>L</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0367_eq_0327.png\"/> <jats:tex-math>{L^{\\prime}/L}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> </m:mrow> <m:mo>∈</m:mo> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mo>′</m:mo> </m:msup> <m:mo>/</m:mo> <m:mi>L</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0367_eq_0384.png\"/> <jats:tex-math>{\\alpha,\\beta\\in L^{\\prime}/L}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We prove the Weil bound for the Kloosterman sums <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>S</m:mi> <m:mrow> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> </m:mrow> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>m</m:mi> <m:mo>,</m:mo> <m:mi>n</m:mi> <m:mo>,</m:mo> <m:mi>c</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0367_eq_0360.png\"/> <jats:tex-math>{S_{\\alpha,\\beta}(m,n,c)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> of half-integral weight for the Weil Representation attached to <jats:italic>L</jats:italic>. We obtain this bound by proving an identity that relates a divisor sum of Kloosterman sums to a sparse exponential sum. This identity generalizes Kohnen’s identity for plus space Kloosterman sums with the theta multiplier system.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"26 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0367","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let L be an even lattice of odd rank with discriminant group L / L {L^{\prime}/L} , and let α , β L / L {\alpha,\beta\in L^{\prime}/L} . We prove the Weil bound for the Kloosterman sums S α , β ( m , n , c ) {S_{\alpha,\beta}(m,n,c)} of half-integral weight for the Weil Representation attached to L. We obtain this bound by proving an identity that relates a divisor sum of Kloosterman sums to a sparse exponential sum. This identity generalizes Kohnen’s identity for plus space Kloosterman sums with the theta multiplier system.
半整数权重的广义克罗斯特曼和的魏尔约束
让 L 是奇数阶的偶数网格,其判别群为 L ′ / L {L^{prime}/L} ,并让α , β ∈ L ′ / L {\alpha,\beta\in L^{\prime}/L} . 让 α , β ∈ L ′ / L {L^{prime}/L} 。我们通过证明一个将 Kloosterman 和的除数和与稀疏指数和相关联的同一性来得到这个边界。这一特性概括了科南特性(Kohnen's identity for plus space Kloosterman sums with theta multiplier system)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信