On Strichartz estimates for many-body Schrödinger equation in the periodic setting

IF 1 3区 数学 Q1 MATHEMATICS
Xiaoqi Huang, Xueying Yu, Zehua Zhao, Jiqiang Zheng
{"title":"On Strichartz estimates for many-body Schrödinger equation in the periodic setting","authors":"Xiaoqi Huang, Xueying Yu, Zehua Zhao, Jiqiang Zheng","doi":"10.1515/forum-2024-0105","DOIUrl":null,"url":null,"abstract":"In this paper, we prove Strichartz estimates for many body Schrödinger equations in the periodic setting, specifically on tori <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>𝕋</m:mi> <m:mi>d</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0105_eq_0168.png\"/> <jats:tex-math>{\\mathbb{T}^{d}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>d</m:mi> <m:mo>≥</m:mo> <m:mn>3</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0105_eq_0185.png\"/> <jats:tex-math>{d\\geq 3}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The results hold for both rational and irrational tori, and for small interacting potentials in a certain sense. Our work is based on the standard Strichartz estimate for Schrödinger operators on periodic domains, as developed in [J. Bourgain and C. Demeter, The proof of the <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>l</m:mi> <m:mn>2</m:mn> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0105_eq_0087.png\"/> <jats:tex-math>l^{2}</jats:tex-math> </jats:alternatives> </jats:inline-formula> decoupling conjecture, Ann. of Math. (2) 182 2015, 1, 351–389]. As a comparison, this result can be regarded as a periodic analogue of [Y. Hong, Strichartz estimates for <jats:italic>N</jats:italic>-body Schrödinger operators with small potential interactions, Discrete Contin. Dyn. Syst. 37 2017, 10, 5355–5365] though we do not use the same perturbation method. We also note that the perturbation method fails due to the derivative loss property of the periodic Strichartz estimate.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"117 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2024-0105","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove Strichartz estimates for many body Schrödinger equations in the periodic setting, specifically on tori 𝕋 d {\mathbb{T}^{d}} , where d 3 {d\geq 3} . The results hold for both rational and irrational tori, and for small interacting potentials in a certain sense. Our work is based on the standard Strichartz estimate for Schrödinger operators on periodic domains, as developed in [J. Bourgain and C. Demeter, The proof of the l 2 l^{2} decoupling conjecture, Ann. of Math. (2) 182 2015, 1, 351–389]. As a comparison, this result can be regarded as a periodic analogue of [Y. Hong, Strichartz estimates for N-body Schrödinger operators with small potential interactions, Discrete Contin. Dyn. Syst. 37 2017, 10, 5355–5365] though we do not use the same perturbation method. We also note that the perturbation method fails due to the derivative loss property of the periodic Strichartz estimate.
论周期性背景下多体薛定谔方程的斯特里查兹估计值
在本文中,我们证明了周期性背景下多体薛定谔方程的斯特里查茨估计,特别是在𝕋 d {\mathbb{T}^{d}} 的环上。 其中 d ≥ 3 {d\geq 3} 。这些结果对有理和无理环都成立,而且在一定意义上对小的相互作用势也成立。我们的工作基于周期域上薛定谔算子的标准斯特里查兹估计 [J. Bourgain 和 C. Demeter]。Bourgain and C. Demeter, The proof of the l 2 l^{2} decoupling conjecture, Ann.作为比较,这一结果可被视为 [Y. Hong, Strichartz estimates for N.C.] 的周期性类似物。Hong, Strichartz estimates for N-body Schrödinger operators with small potential interactions, Discrete Contin.Dyn.Syst.37 2017, 10, 5355-5365],尽管我们没有使用相同的扰动方法。我们还注意到,由于周期性 Strichartz 估计的导数损失特性,扰动方法失败了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信