Highly sensitive and easy-to-attach wearable sensor for measuring finger force based on curvature changes in an ellipse-shaped finger ring

IF 3.7 3区 材料科学 Q1 INSTRUMENTS & INSTRUMENTATION
Takashi Ozaki, Norikazu Ohta, Motohiro Fujiyoshi
{"title":"Highly sensitive and easy-to-attach wearable sensor for measuring finger force based on curvature changes in an ellipse-shaped finger ring","authors":"Takashi Ozaki, Norikazu Ohta, Motohiro Fujiyoshi","doi":"10.1088/1361-665x/ad5127","DOIUrl":null,"url":null,"abstract":"Technologies for digitizing worker actions to enhance human labor tasks, mitigate accidents, and prevent disabling injuries have garnered significant attention. This study focuses on monitoring the force exerted by the fingers and developing a wearable fingertip force sensor based on a simple elliptical ring structure in conjunction with a commercially available resistive bend sensor. Resembling a ring accessory, the sensor is easy to attach and detach, and exhibits high sensitivity, with a resistance change of approximately 9% for a fingertip load of 1 N. Furthermore, to mitigate crosstalk during finger flexion, we propose a combined configuration employing this ring-shaped sensor alongside another sensor designed for measuring and rectifying finger flexion angles. Additionally, we introduce an empirically derived fitting function and a straightforward calibration procedure to extract the function’s parameters. The proposed system achieves an average RMS error of 0.53 N for force estimations of approximately 5 N, even during finger flexion and postural changes.","PeriodicalId":21656,"journal":{"name":"Smart Materials and Structures","volume":"11 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-665x/ad5127","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Technologies for digitizing worker actions to enhance human labor tasks, mitigate accidents, and prevent disabling injuries have garnered significant attention. This study focuses on monitoring the force exerted by the fingers and developing a wearable fingertip force sensor based on a simple elliptical ring structure in conjunction with a commercially available resistive bend sensor. Resembling a ring accessory, the sensor is easy to attach and detach, and exhibits high sensitivity, with a resistance change of approximately 9% for a fingertip load of 1 N. Furthermore, to mitigate crosstalk during finger flexion, we propose a combined configuration employing this ring-shaped sensor alongside another sensor designed for measuring and rectifying finger flexion angles. Additionally, we introduce an empirically derived fitting function and a straightforward calibration procedure to extract the function’s parameters. The proposed system achieves an average RMS error of 0.53 N for force estimations of approximately 5 N, even during finger flexion and postural changes.
根据椭圆形指环的曲率变化测量手指力量的高灵敏度易穿戴传感器
将工人的动作数字化,以加强人类的劳动任务、减少事故和防止致残性伤害的技术已引起人们的极大关注。本研究的重点是监测手指施加的力,并开发一种基于简单椭圆环结构的可穿戴指尖力传感器,该传感器与市售电阻式弯曲传感器相结合。该传感器类似于一个环形配件,易于安装和拆卸,灵敏度高,在指尖负荷为 1 N 时,电阻变化率约为 9%。此外,为了减少手指屈曲时的串扰,我们提出了一种组合配置,将这种环形传感器与另一种用于测量和纠正手指屈曲角度的传感器结合使用。此外,我们还引入了一个根据经验推导出的拟合函数和一个简单的校准程序来提取函数参数。即使在手指屈曲和姿势变化时,所提议的系统在估算约 5 N 的力时也能实现 0.53 N 的平均均方根误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Smart Materials and Structures
Smart Materials and Structures 工程技术-材料科学:综合
CiteScore
7.50
自引率
12.20%
发文量
317
审稿时长
3 months
期刊介绍: Smart Materials and Structures (SMS) is a multi-disciplinary engineering journal that explores the creation and utilization of novel forms of transduction. It is a leading journal in the area of smart materials and structures, publishing the most important results from different regions of the world, largely from Asia, Europe and North America. The results may be as disparate as the development of new materials and active composite systems, derived using theoretical predictions to complex structural systems, which generate new capabilities by incorporating enabling new smart material transducers. The theoretical predictions are usually accompanied with experimental verification, characterizing the performance of new structures and devices. These systems are examined from the nanoscale to the macroscopic. SMS has a Board of Associate Editors who are specialists in a multitude of areas, ensuring that reviews are fast, fair and performed by experts in all sub-disciplines of smart materials, systems and structures. A smart material is defined as any material that is capable of being controlled such that its response and properties change under a stimulus. A smart structure or system is capable of reacting to stimuli or the environment in a prescribed manner. SMS is committed to understanding, expanding and dissemination of knowledge in this subject matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信