Classification of right-angled Coxeter groups with a strongly solid von Neumann algebra

IF 2.1 1区 数学 Q1 MATHEMATICS
{"title":"Classification of right-angled Coxeter groups with a strongly solid von Neumann algebra","authors":"","doi":"10.1016/j.matpur.2024.06.006","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>W</em> be a finitely generated right-angled Coxeter group with group von Neumann algebra <span><math><mi>L</mi><mo>(</mo><mi>W</mi><mo>)</mo></math></span>. We prove the following dichotomy: either <span><math><mi>L</mi><mo>(</mo><mi>W</mi><mo>)</mo></math></span> is strongly solid or <em>W</em> contains <span><math><mi>Z</mi><mo>×</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> as a subgroup. This proves in particular strong solidity of <span><math><mi>L</mi><mo>(</mo><mi>W</mi><mo>)</mo></math></span> for all non-hyperbolic Coxeter groups that do not contain <span><math><mi>Z</mi><mo>×</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>.</p></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"189 ","pages":"Article 103591"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021782424000813/pdfft?md5=7815ad0f570af89f7e83c33e2d0c0dea&pid=1-s2.0-S0021782424000813-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000813","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let W be a finitely generated right-angled Coxeter group with group von Neumann algebra L(W). We prove the following dichotomy: either L(W) is strongly solid or W contains Z×F2 as a subgroup. This proves in particular strong solidity of L(W) for all non-hyperbolic Coxeter groups that do not contain Z×F2.

具有强固冯-诺依曼代数的直角库克斯特群的分类
给定一个直角库克斯特群和相关的冯-诺依曼代数,我们展示了以下替代方案:是强实心的,或者是 。特别是,这意味着不包含的非双曲 Coxeter 群有一个强固的 von Neumann 代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信