On schemes evinced by generalized additive decompositions and their regularity

IF 2.1 1区 数学 Q1 MATHEMATICS
Alessandra Bernardi , Alessandro Oneto , Daniele Taufer
{"title":"On schemes evinced by generalized additive decompositions and their regularity","authors":"Alessandra Bernardi ,&nbsp;Alessandro Oneto ,&nbsp;Daniele Taufer","doi":"10.1016/j.matpur.2024.06.007","DOIUrl":null,"url":null,"abstract":"<div><p>We define and explicitly construct schemes evinced by generalized additive decompositions (GADs) of a given <em>d</em>-homogeneous polynomial <em>F</em>. We employ GADs to investigate the regularity of 0-dimensional schemes apolar to <em>F</em>, focusing on those satisfying some minimality conditions. We show that irredundant schemes to <em>F</em> need not be <em>d</em>-regular, unless they are evinced by special GADs of <em>F</em>. Instead, we prove that tangential decompositions of minimal length are always <em>d</em>-regular, as well as irredundant apolar schemes of length at most <span><math><mn>2</mn><mi>d</mi><mo>+</mo><mn>1</mn></math></span>.</p></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"188 ","pages":"Pages 446-469"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000825","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We define and explicitly construct schemes evinced by generalized additive decompositions (GADs) of a given d-homogeneous polynomial F. We employ GADs to investigate the regularity of 0-dimensional schemes apolar to F, focusing on those satisfying some minimality conditions. We show that irredundant schemes to F need not be d-regular, unless they are evinced by special GADs of F. Instead, we prove that tangential decompositions of minimal length are always d-regular, as well as irredundant apolar schemes of length at most 2d+1.

关于广义加法分解及其规律性所体现的方案
我们明确定义并构建了与给定同次多项式的广义加法分解(GADs)相关的方案。我们利用 GADs 来研究极性 0 维方案的正则性,重点是那些满足某些最小条件的方案。我们证明,除非与特殊的 GAD 相关联,否则有极性的非冗余方案不一定-正则。另一方面,我们证明了最小长度的切向分解总是-规则的,长度至多为...的非冗余极性方案也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信