Supervised Low-Rank Semi-nonnegative Matrix Factorization with Frequency Regularization for Forecasting Spatio-temporal Data

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Keunsu Kim, Hanbaek Lyu, Jinsu Kim, Jae-Hun Jung
{"title":"Supervised Low-Rank Semi-nonnegative Matrix Factorization with Frequency Regularization for Forecasting Spatio-temporal Data","authors":"Keunsu Kim, Hanbaek Lyu, Jinsu Kim, Jae-Hun Jung","doi":"10.1007/s10915-024-02565-7","DOIUrl":null,"url":null,"abstract":"<p>We propose a novel methodology for forecasting spatio-temporal data using supervised semi-nonnegative matrix factorization (SSNMF) with frequency regularization. Matrix factorization is employed to decompose spatio-temporal data into spatial and temporal components. To improve clarity in the temporal patterns, we introduce a nonnegativity constraint on the time domain along with regularization in the frequency domain. Specifically, regularization in the frequency domain involves selecting features in the frequency space, making an interpretation in the frequency domain more convenient. We propose two methods in the frequency domain: soft and hard regularizations, and provide convergence guarantees to first-order stationary points of the corresponding constrained optimization problem. While our primary motivation stems from geophysical data analysis based on GRACE (Gravity Recovery and Climate Experiment) data, our methodology has the potential for wider application. Consequently, when applying our methodology to GRACE data, we find that the results with the proposed methodology are comparable to previous research in the field of geophysical sciences but offer clearer interpretability.</p>","PeriodicalId":50055,"journal":{"name":"Journal of Scientific Computing","volume":"185 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02565-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a novel methodology for forecasting spatio-temporal data using supervised semi-nonnegative matrix factorization (SSNMF) with frequency regularization. Matrix factorization is employed to decompose spatio-temporal data into spatial and temporal components. To improve clarity in the temporal patterns, we introduce a nonnegativity constraint on the time domain along with regularization in the frequency domain. Specifically, regularization in the frequency domain involves selecting features in the frequency space, making an interpretation in the frequency domain more convenient. We propose two methods in the frequency domain: soft and hard regularizations, and provide convergence guarantees to first-order stationary points of the corresponding constrained optimization problem. While our primary motivation stems from geophysical data analysis based on GRACE (Gravity Recovery and Climate Experiment) data, our methodology has the potential for wider application. Consequently, when applying our methodology to GRACE data, we find that the results with the proposed methodology are comparable to previous research in the field of geophysical sciences but offer clearer interpretability.

Abstract Image

用于时空数据预测的带频率正则化的有监督低库半负矩阵因式分解法
我们提出了一种使用频率正则化监督半负矩阵因式分解(SSNMF)预测时空数据的新方法。采用矩阵因式分解法将时空数据分解为空间和时间成分。为了提高时间模式的清晰度,我们在频域正则化的同时引入了时域非负约束。具体来说,频域正则化涉及选择频率空间中的特征,使频域解释更加方便。我们提出了两种频域正则化方法:软正则化和硬正则化,并为相应约束优化问题的一阶静止点提供了收敛保证。虽然我们的主要动机源于基于 GRACE(重力恢复与气候实验)数据的地球物理数据分析,但我们的方法具有更广泛的应用潜力。因此,在将我们的方法应用于 GRACE 数据时,我们发现所提出方法的结果与地球物理科学领域以前的研究结果相当,但具有更清晰的可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Scientific Computing
Journal of Scientific Computing 数学-应用数学
CiteScore
4.00
自引率
12.00%
发文量
302
审稿时长
4-8 weeks
期刊介绍: Journal of Scientific Computing is an international interdisciplinary forum for the publication of papers on state-of-the-art developments in scientific computing and its applications in science and engineering. The journal publishes high-quality, peer-reviewed original papers, review papers and short communications on scientific computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信