A $$\theta $$ -L Approach for the Simulation of Solid-State Dewetting Problems with Strongly Anisotropic Surface Energies

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Weijie Huang, Wei Jiang, Yan Wang
{"title":"A $$\\theta $$ -L Approach for the Simulation of Solid-State Dewetting Problems with Strongly Anisotropic Surface Energies","authors":"Weijie Huang, Wei Jiang, Yan Wang","doi":"10.1007/s10915-024-02589-z","DOIUrl":null,"url":null,"abstract":"<p>This paper aims to develop an efficient numerical scheme for simulating solid-state dewetting with strongly anisotropic surface energies in two dimensions. The governing equation is a sixth-order, highly nonlinear geometric partial differential equation, which makes it quite challenging to design an efficient numerical scheme. To tackle this problem, we first introduce an appropriate tangent velocity of the interface curve which could help mesh points equally distribute along the curve, then we reformulate the governing equation in terms of the tangent angle <span>\\(\\theta \\)</span> and the length <i>L</i> of the interface curve with a release of the stiffness brought by surface tension. To further reduce the numerical stability constraint from the high-order PDE, we propose a mixed finite element method for solving the reformulated <span>\\(\\theta \\)</span>-<i>L</i> equations. Numerical results are provided to demonstrate that the <span>\\(\\theta \\)</span>-<i>L</i> approach is not only efficient and accurate, but also has the mesh equidistribution property with an improved numerical stability.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02589-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to develop an efficient numerical scheme for simulating solid-state dewetting with strongly anisotropic surface energies in two dimensions. The governing equation is a sixth-order, highly nonlinear geometric partial differential equation, which makes it quite challenging to design an efficient numerical scheme. To tackle this problem, we first introduce an appropriate tangent velocity of the interface curve which could help mesh points equally distribute along the curve, then we reformulate the governing equation in terms of the tangent angle \(\theta \) and the length L of the interface curve with a release of the stiffness brought by surface tension. To further reduce the numerical stability constraint from the high-order PDE, we propose a mixed finite element method for solving the reformulated \(\theta \)-L equations. Numerical results are provided to demonstrate that the \(\theta \)-L approach is not only efficient and accurate, but also has the mesh equidistribution property with an improved numerical stability.

Abstract Image

模拟具有强各向异性表面能量的固态润湿问题的 $$\theta $$ -L 方法
本文旨在开发一种高效的数值方案,用于模拟二维具有强各向异性表面能的固态露化。支配方程是一个六阶、高度非线性的几何偏微分方程,这使得设计一个高效的数值方案具有相当大的挑战性。为了解决这个问题,我们首先引入了适当的界面曲线切线速度,这有助于网格点沿曲线平均分布,然后我们用切线角度(\theta \)和界面曲线长度 L 来重新表述支配方程,并释放了表面张力带来的刚度。为了进一步减少来自高阶 PDE 的数值稳定性约束,我们提出了一种混合有限元方法来求解重新表述的 \(\theta \)-L 方程。数值结果表明,(theta)-L 方法不仅高效、精确,而且具有网格等分布特性,数值稳定性也有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信