On the common transversal probability

Pub Date : 2024-06-26 DOI:10.1515/jgth-2024-0030
Stefanos Aivazidis, Maria Loukaki, Thomas W. Müller
{"title":"On the common transversal probability","authors":"Stefanos Aivazidis, Maria Loukaki, Thomas W. Müller","doi":"10.1515/jgth-2024-0030","DOIUrl":null,"url":null,"abstract":"Let 𝐺 be a finite group, and let 𝐻 be a subgroup of 𝐺. We compute the probability, denoted by <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>P</m:mi> <m:mi>G</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>H</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2024-0030_ineq_0001.png\"/> <jats:tex-math>P_{G}(H)</jats:tex-math> </jats:alternatives> </jats:inline-formula>, that a left transversal of 𝐻 in 𝐺 is also a right transversal, thus a two-sided one. Moreover, we define, and denote by <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>tp</m:mi> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2024-0030_ineq_0002.png\"/> <jats:tex-math>\\operatorname{tp}(G)</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the common transversal probability of 𝐺 to be the minimum, taken over all subgroups 𝐻 of 𝐺, of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>P</m:mi> <m:mi>G</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>H</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2024-0030_ineq_0001.png\"/> <jats:tex-math>P_{G}(H)</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We prove a number of results regarding the invariant <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>tp</m:mi> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2024-0030_ineq_0002.png\"/> <jats:tex-math>\\operatorname{tp}(G)</jats:tex-math> </jats:alternatives> </jats:inline-formula>, like lower and upper bounds, and possible values it can attain. We also show that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>tp</m:mi> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2024-0030_ineq_0002.png\"/> <jats:tex-math>\\operatorname{tp}(G)</jats:tex-math> </jats:alternatives> </jats:inline-formula> determines structural properties of 𝐺. Finally, several open problems are formulated and discussed.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2024-0030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let 𝐺 be a finite group, and let 𝐻 be a subgroup of 𝐺. We compute the probability, denoted by P G ( H ) P_{G}(H) , that a left transversal of 𝐻 in 𝐺 is also a right transversal, thus a two-sided one. Moreover, we define, and denote by tp ( G ) \operatorname{tp}(G) , the common transversal probability of 𝐺 to be the minimum, taken over all subgroups 𝐻 of 𝐺, of P G ( H ) P_{G}(H) . We prove a number of results regarding the invariant tp ( G ) \operatorname{tp}(G) , like lower and upper bounds, and possible values it can attain. We also show that tp ( G ) \operatorname{tp}(G) determines structural properties of 𝐺. Finally, several open problems are formulated and discussed.
分享
查看原文
关于共同横向概率
设𝐺 是一个有限群,又设𝐻 是𝐺 的一个子群。我们用 P G ( H ) P_{G}(H)来计算𝐻 在𝐺 中的左横也是右横的概率,即双面概率。此外,我们定义𝐺 的公共横切概率为 P G ( H ) P_{G}(H) 在𝐺 的所有子群 𝐻 中的最小值,并用 tp ( G ) (operatorname{tp}(G) )表示。我们证明了一些关于不变式 tp ( G ) (operatorname{tp}(G) )的结果,如下限和上限,以及它可能达到的值。我们还证明了 tp ( G ) \operatorname{tp}(G) 决定了𝐺的结构属性。最后,我们提出并讨论了几个悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信