{"title":"Solving, tracking and stopping streaming linear inverse problems","authors":"Nathaniel Pritchard and Vivak Patel","doi":"10.1088/1361-6420/ad5583","DOIUrl":null,"url":null,"abstract":"In large-scale applications including medical imaging, collocation differential equation solvers, and estimation with differential privacy, the underlying linear inverse problem can be reformulated as a streaming problem. In theory, the streaming problem can be effectively solved using memory-efficient, exponentially-converging streaming solvers. In special cases when the underlying linear inverse problem is finite-dimensional, streaming solvers can periodically evaluate the residual norm at a substantial computational cost. When the underlying system is infinite dimensional, streaming solver can only access noisy estimates of the residual. While such noisy estimates are computationally efficient, they are useful only when their accuracy is known. In this work, we rigorously develop a general family of computationally-practical residual estimators and their uncertainty sets for streaming solvers, and we demonstrate the accuracy of our methods on a number of large-scale linear problems. Thus, we further enable the practical use of streaming solvers for important classes of linear inverse problems.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"73 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad5583","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In large-scale applications including medical imaging, collocation differential equation solvers, and estimation with differential privacy, the underlying linear inverse problem can be reformulated as a streaming problem. In theory, the streaming problem can be effectively solved using memory-efficient, exponentially-converging streaming solvers. In special cases when the underlying linear inverse problem is finite-dimensional, streaming solvers can periodically evaluate the residual norm at a substantial computational cost. When the underlying system is infinite dimensional, streaming solver can only access noisy estimates of the residual. While such noisy estimates are computationally efficient, they are useful only when their accuracy is known. In this work, we rigorously develop a general family of computationally-practical residual estimators and their uncertainty sets for streaming solvers, and we demonstrate the accuracy of our methods on a number of large-scale linear problems. Thus, we further enable the practical use of streaming solvers for important classes of linear inverse problems.
期刊介绍:
An interdisciplinary journal combining mathematical and experimental papers on inverse problems with theoretical, numerical and practical approaches to their solution.
As well as applied mathematicians, physical scientists and engineers, the readership includes those working in geophysics, radar, optics, biology, acoustics, communication theory, signal processing and imaging, among others.
The emphasis is on publishing original contributions to methods of solving mathematical, physical and applied problems. To be publishable in this journal, papers must meet the highest standards of scientific quality, contain significant and original new science and should present substantial advancement in the field. Due to the broad scope of the journal, we require that authors provide sufficient introductory material to appeal to the wide readership and that articles which are not explicitly applied include a discussion of possible applications.