Yan Wang, Ning Ding, Rui Zhang, Guanhua Jin, Dan Sun, Yougen Tang, Haiyan Wang
{"title":"Rational design of practical layered transition metal oxide cathode materials for sodium-ion batteries","authors":"Yan Wang, Ning Ding, Rui Zhang, Guanhua Jin, Dan Sun, Yougen Tang, Haiyan Wang","doi":"10.1007/s11705-024-2435-z","DOIUrl":null,"url":null,"abstract":"<div><p>Sodium-ion batteries (SIBs), which serve as alternatives or supplements to lithium-ion batteries, have been developed rapidly in recent years. Designing advanced high-performance layered Na<sub><i>x</i></sub>TMO<sub>2</sub> cathode materials is beneficial for accelerating the commercialization of SIBs. Herein, the recent research progress on scalable synthesis methods, challenges on the path to commercialization and practical material design strategies for layered Na<sub><i>x</i></sub>TMO<sub>2</sub> cathode materials is summarized. Co-precipitation method and solid-phase method are commonly used to synthesize Na<sub><i>x</i></sub>TMO<sub>2</sub> on mass production and show their own advantages and disadvantages in terms of manufacturing cost, operative difficulty, sample quality and so on. To overcome drawbacks of layered Na<sub><i>x</i></sub>TMO<sub>2</sub> cathode materials and meet the requirements for practical application, a detailed and deep understanding of development trends of layered Na<sub><i>x</i></sub>TMO<sub>2</sub> cathode materials is also provided, including high specific energy materials, high-entropy oxides, single crystal materials, wide operation temperature materials and high air stability materials. This work can provide useful guidance in developing practical layered Na<sub><i>x</i></sub>TMO<sub>2</sub> cathode materials for commercial SIBs.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 7","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-024-2435-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Sodium-ion batteries (SIBs), which serve as alternatives or supplements to lithium-ion batteries, have been developed rapidly in recent years. Designing advanced high-performance layered NaxTMO2 cathode materials is beneficial for accelerating the commercialization of SIBs. Herein, the recent research progress on scalable synthesis methods, challenges on the path to commercialization and practical material design strategies for layered NaxTMO2 cathode materials is summarized. Co-precipitation method and solid-phase method are commonly used to synthesize NaxTMO2 on mass production and show their own advantages and disadvantages in terms of manufacturing cost, operative difficulty, sample quality and so on. To overcome drawbacks of layered NaxTMO2 cathode materials and meet the requirements for practical application, a detailed and deep understanding of development trends of layered NaxTMO2 cathode materials is also provided, including high specific energy materials, high-entropy oxides, single crystal materials, wide operation temperature materials and high air stability materials. This work can provide useful guidance in developing practical layered NaxTMO2 cathode materials for commercial SIBs.
期刊介绍:
Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.